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A B S T R A C T

This paper examines the role of the consumer in the emerging household-level battery market. We use stated
preference data and choice modelling to measure household preferences for battery attributes and functionality.
Our survey sample has been sourced from the State of Queensland, Australia, which has some of the highest per
capita PV installation rates in the world and has many characteristics of an early-adopter market for battery
storage. While cost will be a key determinant for mass market uptake, our study found that drivers encouraging
self-sufficiency and grid independence will have a strong influence on battery system preferences. A majority of
the 268 respondents to our survey would prefer to buy medium or large battery systems despite higher costs and
longer payback periods. Nearly 70% of respondents hope to eventually disconnect from the existing centralized
electricity supply network. Should these findings translate more broadly, and battery prices decline as forecast,
changing energy market dynamics could result in a range of negative outcomes. Declining infrastructure
utilization, asset impairment, rising electricity costs and negative social outcomes could eventuate as consumers
attempt to reduce their reliance on existing electricity supply systems. To proactively manage these risks, our
study demonstrates the clear need to better understand and address consumer motivations in the impending
energy market transition.

1. Introduction

Centralized electricity supply systems contribute nearly 40% of
global energy-related greenhouse gas emissions [1]. Despite recent
progress in reducing the emissions intensity of the sector, additional
measures are urgently required to avoid the worst impacts of climate
change [2]. With some governments and industries struggling to
deliver on this challenge, it is the rise of a large and engaged consumer
base which may provide the impetus for transformational change in the
electricity sector.

Rapid growth in residential rooftop solar photovoltaic systems (PV)
in recent years has shown the collective and disruptive power of the
consumer. Global PV deployment increased from approximately
1.3 gigawatts (GW) in 2000 to 177 GW by the end of 2014 [3,4].
This growth is expected to continue with some forecasts suggesting
solar power could generate up to 16% of the world's electricity by 2050
[5].

In Australia, PV capacity increased from 17 MW (MW) in 2008 to
more than 4.5 GW in 2015 [6,7]. Approximately 18% of homes in
Australia, or more than 1.5 million households, now have PV installed
which means Australia has some of the highest PV penetration rates in
the world [8]. Queensland with nearly 1.5 GW of installed PV has the
highest capacity in Australia with more than 29% of homes having solar

installed [9].
The rapid uptake in residential PV demonstrates the power of

consumer-led deployment. It is particularly impressive considering it
has largely occurred in the past five years. With grid parity achieved for
most of Australia, solar growth of more than 20% per annum is
forecast, with a total of more than 20 GW of solar likely to be installed
in Australia by 2035 [10].

Household-level battery storage is now emerging as the next
generation of energy technology on the cusp of mass-market penetra-
tion. Access to viable and affordable electricity battery storage will give
consumers greater autonomy and control over their electricity use
while reducing exposure to increasing electricity prices.

Depending on the functionality that consumers are seeking, they
could:

• install small batteries to shift the time electricity is drawn from the
network, particularly during peak demand periods so as to lower
total electricity bills

• install medium sized batteries to maximize the use of solar
electricity from home panels, using the grid only for backup

• disconnect entirely from the grid with all household energy needs
met from a large solar and battery home energy system.
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Despite the many applications of battery storage, its high cost
continues to impede uptake and it is used only in niche markets or
where consumers are driven by non-economic factors [11,12]. Recent
developments have however triggered substantial investments in
technology development and manufacturing capacity, resulting in
dramatic price declines.

Electric vehicle company Tesla is building a $5 billion factory in the
United States that will manufacture 500,000 batteries by 2020,
resulting in an estimated reduction in battery costs of 30% by 2017
[13]. Other global battery manufacturers have also significantly
increased production while a number of governments have implemen-
ted subsidy arrangements to encourage storage uptake [14,15].

In the past two years, industry and academia have made strong
forecasts about price declines for storage with some suggesting that
battery prices could halve by 2020 [15–19]. Should this occur, grid
parity for solar PV and storage would be achieved for Australia in less
than a decade, along with other key international markets such as
Germany and California [16,20,21].

These bullish forecasts were considered with scepticism by many in
the broader electricity industry. However in early 2015, Tesla an-
nounced pricing for two new home battery storage solutions which
undercut all previous price expectations and resulted in recalibration of
battery forecasts [22]. The 10kWh Tesla battery pack priced at $350
kWh was approximately 7 years ahead of many projections [23].

With battery storage prices dropping to a point where payback
periods are becoming achievable for mainstream markets in the short
to medium term, industry and governments must actively prepare for
uptake of battery storage. Failure to do so could see inefficiencies and
negative consequences along the electricity supply chain as consumers
use batteries to change their electricity consumption behavior and
reduce their reliance on the existing electricity network.

Despite the significance of these developments, there is little
published research that examines the role of the consumer in the
growing household-level battery market. Past research has analysed the
consumer's relationship with energy markets and the motivations that
may encourage uptake of a range of distributed energy technologies.
However, a gap exists for primary research that specifically looks at
consumer motivations and how they relate to battery attributes and
functionality.

To help address the gap, this paper examines the role of the
consumer in the emerging household-level battery market. We use
stated preference data and choice modelling to demonstrate the specific
financial and non-financial factors that will motivate battery storage
uptake and how this could translate into battery purchasing prefer-
ences. This research provides a foundation to better understand
consumer motivations as the energy market transitions and will help
inform policy and strategic decision making aimed at achieving optimal
integration of the technology.

2. Theoretical approach – choice modelling

The choice modelling theoretical framework is based on the concept
that any good can be described in terms of its attributes, or character-
istics, and the different levels that these could take [24]. Choice
modelling is a stated preference technique which involves asking
respondents to choose a selection of product attributes and/or non-
use values such as motivations so these preferences can be represented
mathematically, modelled and/or used in simulations [25]. Two
choice-modelling methods, best-worst scaling (BWS) and a discrete
choice experiment (DCE), were used in this study to determine
respondent product preference and non-use values and motivations.
The theoretical application of these techniques is considered in more
detail below.

2.1. Best-worst scaling

BWS can be used to determine consumer preferences and the
strength of those preferences for various attributes in a statistically
relevant manner [26]. BWS is grounded in Random Utility Theory
which assumes that an individual's preference for item A compared
with item B is a function of the frequency with which item A is chosen
as better than, or preferred to B [26]. Effectively, BWS sees participants
choosing the items that reflect the maximum difference in preference
or importance, which over a number of choice sets provides much more
information about the overall ranking of the items [27]. This is
important as people are better at selecting for extremes than in trying
to choose items that are more closely aligned or middle of the range
[27]. As an extension of Thurstone's Law of Comparative Judgement
[28], this theory allows ‘scale values’, which are measures of the
position of each item on a subjective scale of interest [26].

Experimental design of BWS includes a number of steps. The first
involves identifying the specific items being asked of respondents to be
included in the study that will address the study's research objective.
The second involves designing and displaying various choice sets. This
requires an experimental design that maximizes frequency balance
(where items appear an equal number of times) and orthogonality
(where each item is paired with each other item an equal number of
times) [27]. The most common way of achieving these requirements is
by using statistical designs called Balanced Incomplete Block Designs
[29]. In addition to achieving statistical rigor, this approach minimizes
participant bias, particularly the possibility that respondents make
assumptions about the items based on design elements [26]. BWS data
can be presented as a hierarchy of preferences, or with regression
analysis it can be used to infer possible consumer behavior based on
preference.

2.2. Discrete choice experiment

DCEs have become one of the most important survey techniques to
capture consumer choice and preference data [30]. In a DCE, partici-
pants respond to different descriptions of a product, differentiated by
the levels of an attribute, and are asked to choose the product they most
prefer [25]. An “attribute” is a product characteristic comprising a
number of “levels” that define the attribute [30]. A “choice set” is the
grouping of two or more product descriptions comprising attributes
and level.

Discrete choice models represent an empirical application of
Random Utility Theory in which choice probabilities change in
response to individual choices made by consumers [31]. The theory
assumes that consumers will always attempt to maximize individual
utility [32]. The utility for an individual is conditional on a choice split
into a deterministic and a stochastic component [33]. The stochastic
components comprise all of the unknown factors that impact choice
which reflect the variability in individual choice [31]. By observing how
participants choose products in regards to different attributes and their
levels, the impact of each can be used to estimate utilities. This can
then be used to predict how consumers might respond to a product
with any combination of levels, whether or not the actual product was
used in the study [34].

Indirect utility according to Random Utility Theory takes the
functional form [31]:

VU = +εin in in

Where:
Uin is the utility associated with an individual n choice of choosing

option i.
Vin is the deterministic element of utility that individual n

associated with option i.
εin is the stochastic element associated with individual n's choice of

option i.
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