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A B S T R A C T

Recently, with the stringent environmental regulations and shortage fossil-fuel reserve, power generation based
on renewable energy sources is seen as a promising solution for future generation systems. A combination of
these sources with an optimized configuration can face the climate change obstacles, permit better reliability,
and reduce the cost of the generated energy. This paper presents a proposed particle swarm optimization (PSO)
algorithm for an optimized design of grid-dependent hybrid photovoltaic-wind energy systems. This algorithm
uses the actual hourly data of wind speeds, solar radiation, temperature, and electricity demand in a certain
location. The PSO algorithm is employed to obtain the minimum cost of the generated energy while matching
the electricity supply with the local demand with particular reliability index. The algorithm has been tested by
considering a real case study used the actual situation to supply the electricity demand from utility grid at
electricity market prices to estimate how significant are the cost saving compared to the actual situation costs.
Results showed that the proposed algorithm responds well to changes in the system parameters and variables
while providing a reliable sizing solution.

1. Introduction

Lately, various renewable energy sources (RES) have been exploited
for power generation to confront the energy crisis, high fuel cost, and
reduce the environmental pollution [1]. However, the capital cost of
these sources is typically high; therefore, reducing capital costs with an
optimized installation is one of the imperative prospects of today's
research [2]. To achieve the optimal installation with a specific set of
parameters and variables, different optimization techniques are being
utilized. In perspective of the complexity of optimization of hybrid
renewable energy systems (HRES), it was pressing to discover effective
optimization methods to achieve a good engineering solution. A
literature review has been carried out to properly evaluate the present
state of research on HRES optimization. Most of the accessed
researches focused on sizing of the grid-independent HRES using
different optimization techniques. Some of these researches used the
iterative optimization technique which is usually time-consuming and
may not obtain accurate results. The work in these researches has the
same target of determining the optimal size of HRES but with different
objective functions, constraints, and input parameters [3–7]. The
authors in [3–5] introduced a model for sizing and optimization of

hybrid PV/wind/battery energy systems using the iterative optimiza-
tion technique. The model considers loss of load probability (LOLP)
and cost of energy (COE) as the optimization objectives. The iterative
optimization technique has been presented in [6] to determine the
optimum size of hybrid PV/wind/battery energy systems in order to
minimize the investment cost. The author in this study assumes that
the battery capacity is infinite to determine the maximum capacity of
the battery and the minimum size of the supply. After that determines
the optimum number of wind turbines (WTs), and PV arrays capable of
supplying the load demand with certain value of LOLP. An approach
using iterative optimization technique has been introduced in [7] for
techno-economic optimization of hybrid PV/wind/battery systems with
and without an uninterruptible power supply (UPS). The minimum
COE was the objective function of the optimization problem. The
authors in this research compared the exhibitions of HRES with and
without the UPS and reported that the system configuration effects on
the value of COE and the state of charge of the battery (SOC),
particularly at low windy locales.

Some other researchers used the graphical construction technique
to determine the optimum integration of PV array and battery in a
hybrid PV/wind/battery energy system [8]. The system has been
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simulated for various integrations of PV array, battery sizes, and
different values of LOLP. At certain value of LOLP, the PV array size
has been plotted versus battery size and the optimal solution, which
minimizes the system cost, has been picked. This kind of graphical
procedures doesn't permit including more than two parameters in the
optimization process (i.e. PV/wind, wind/battery, or PV/battery).

Another researchers used linear programming technique [9–11],
mixed integer linear programming [12], Monte-Carlo simulation
approach [13,14], dynamic programming technique [15,16] probabil-
istic approach [17,18], whereas others used fuzzy logic controller with
multi-objectives optimization [19].

Some other researches depend on the existent optimization soft-
ware, such as the hybrid optimization model for electric renewable
(HOMER), and the hybrid power system simulation model
(HYBRID2). HOMER software has been used in [20] for the optimiza-
tion of a hybrid PV/wind/battery system and its performance for a
typical community load in Bangladesh. The main limitation of HOMER
software is that the sizing of the system components assumes many
simplifications during the optimization process. This may has a
significant impact on the accuracy of results deduced from HOMER
software. In addition, the analysis requires more information on

resources, economic constraints, and control methods which might
be hard to be accessed. Therefore, the lowest price obtained with
HOMER software is not always the optimum solution but it may be the
best possibility from the available possibilities entered for each
component as a data. The authors in [21] applied HYBRID2 software
in conjunction with a simplified time-series model to analysis and size a
hybrid PV/wind system to supply electricity to about one-third of the
non-grid connected households in Inner Mongolia. Sizing of the major
components of the system has been determined based on the trade-off
between the cost of the system and the percent unmet load. The
authors showed that using PV to the wind system in conjunction with
battery storage reduces the unmet load by over 75%. Although
HYBRID2 can simulate the hybrid systems with remarkably high
precision calculations, it does not optimize the size of the system
components.

A group of researchers relies in their work on short-term or unreal
meteorological data of wind speed, solar radiation, temperature, and
load data. This may weaken the analysis and reduces the sizing
accuracy of the system [22–25].

Another different researches developed optimization methodologies
based on various optimization approaches such as genetic algorithm

Nomenclature

u(h) wind speed at the hub height of WT
u(hg) wind speed at anemometer height
α roughness factor, 0.14
PW the output power of WT
Pr the rated output power of WT
uc cut-in wind speed
ur rated wind speed
uf cut-off wind speed
PWT,av the WT average power generated
CF capacity factor
c scale parameter
k shape parameter
NWT average number of WT
PL,av average annual load demand
ωm WT rotational speed
ωmopt optimum rotational speed of WT
Cp(λ, β) WT power coefficient
λ tip speed ratio
β blade pitch angle
R radius of swept area of WT blades
Ht solar radiation on tilted surface
µc(t) instantaneous PV cell efficiency
ηPC power conditioning system efficiency
γ azimuth angle
β angle between tilted surface and horizontal
TIC total investment cost
IC capital cost
OMC operation and maintenance cost
RC replacement cost
NC number of controllers
NV number of converters
x size optimization variables; x=NWT, PVA, NC, and NV
GSC cost of surplus energy
GDC cost of deficit energy
T system lifetime
ICPV initial cost of PV energy system
ICWT initial cost of WT energy system
ICcontroller operation and maintenance cost of PV energy system
ICconverter operation and maintenance cost of PV energy system
OMCPV operation and maintenance cost of PV energy system

OMCWT operation and maintenance cost of WT energy system
OMCcontroller operation and maintenance cost of controllers
OMCconverter operation and maintenance cost of converters
r net interest rate
i inflation rate
RCPV replacement cost of PV energy system
RCWT replacement cost of WT energy system
RCcontroller replacement cost of controllers
RCconverter replacement cost of converters
NRPV no. of replacements of PV energy system
NRWT no. of replacements of WT energy system
NRcontroller no. of replacements of controllers
NRconverter no. of replacements of converters
CRC capacity of the replacement units
CU cost of replacement units
PSV present value of scrap of the HRES components
SV value of scrap
ST salvage times
EPV total annual energy of PV system
EWT total annual energy of WT system
EGD total annual energy purchased from grid
EL total annual load energy
PL load power
PPV PV system power
PW WT system power
PSG surplus power supplied to grid
PDG deficit power purchased from grid
ηCO controller efficiency, 95%
ηCV converter efficiency, 95%
PG grid power
LOLPnew the old value of loss of load probability
LOLPold the old value of loss of load probability
LOLPindex the designed values of loss of load probability counter
Pi best experience for each particle
Gi global best particle
xi(g) position vector
vi(g) velocity vector
i index number of every particle in the swarm
M dimension of the search space
g iteration number
c1 self-confidence
c2 swarm-confidence
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