
Contents lists available at ScienceDirect

Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser

A review of dendritic growth during solidification: Mathematical modeling
and numerical simulations

Mohamad Ali Jaafara,b, Daniel R. Roussea, Stéphane Giboutb, Jean-Pierre Bédécarratsb,⁎

a t3e Industrial Research Group, École de technologie supérieure, Montréal, QC, Canada
b Univ. Pau & Pays Adour, Laboratoire de Thermique Energétique et Procédés-IPRA, EA1932, Rue Jules Ferry, BP7511, PAU F-64075, France

A R T I C L E I N F O

Keywords:
Dendritic growth
Gibbs-Thomson equation
Front Tracking method
Phase field model
Level set method
Enthalpy method
Volume of fluid method

A B S T R A C T

Dendritic growth is one of the most common microstructures in metal and solution solidification. The subject of
dendritic growth has received much attention from both scientific and industrial points of view. On the one
hand, dendritic growth has become a deeply investigated subject in non-linear dynamics field. On the other
hand, its understanding became essential for some engineering applications, mainly in metallurgy and latent
thermal energy storage where phase change materials are used. Therefore, understanding and modeling the
mechanisms which result the dendritic structures has been the objective of much research over the last decades.
In order to understand the formation of dendrites, it is essential to understand the physical mechanisms on the
interface separating the two phases. This paper reviews and discusses the available theories of dendritic growth,
and then introduces the Gibbs-Thomson condition which has to be taken into account to handle all interfacial
effects. Based on the Gibbs-Thomson condition, a complete mathematical model describing the dendritic
growth problem for pure substances is formulated. This model includes the heat equation in both liquid and
solid phases, the heat conservation equation at the interface separating these two phases, and the proposed
Gibbs-Thomson equation. In order to solve this complex non-linear problem, several numerical methods have
been developed. Hence, in its last section, the paper reviews these numerical methods distinguishing between
two major classes involving the explicit and the implicit tracking of the moving interface.

1. Introduction

The formation of patterns in nature is largely found everywhere
[1,2], some examples are cloud formation [3], bacterial colonies [4],
and grain structures in metals [5] or rocks [6]. Dendritic crystal growth
is one of the most spontaneous pattern formations. For instance,
snowflakes have various types of complex and fascinating shapes,
although they are formed in almost uniform circumstances.

Further, dendritic structures are also commonly forms of micro-
structure, being present in all macroscopic castings, ingots, and welds.

During a cooling process, if care is taken and in the absence of
perturbations, it is possible that the material remains in its liquid state,
even below its solid-liquid equilibrium temperature. Thus supercooled
liquid may appear [7]. Such a state is thermodynamically metastable
[8–10]. Then the solidification can occur either homogeneously [11,12]
after sufficient cooling or heterogeneously by placing for example a
solid seed in the supercooled liquid [13–15]. Furthermore, once the
solid is nucleated through the supercooled liquid, the subsequent
growth of the solid from the seed may not to be stable and a dendritic

crystal may form, depending on several factors, mainly the degree of
supercooling. “Dendrites are a prototypical system evolving from
homogeneous starting conditions into complex spatio-temporal pat-
terns far from equilibrium” [16].

The descriptive term ‘dendrite’ comes from the Greek word
‘dendron’ which means tree [17]. Like a tree, the dendrite has a highly
branched, arborescent structure (see Fig. 1 [103]). Due to the interface
instabilities, a dendritic crystal consists of a primary stem, secondary
branches, and eventually higher order branches evolving, all growing in
selected crystallographic directions.

The evolution of the dendritic pattern has received much attention
from both scientific and engineering points of view for its intricate
pattern selection mechanisms and useful industrial applications,
mainly in metallurgy and thermal energy storage fields. On the one
hand, dendrites in metallurgy establish the initial microstructures of
cast metals and alloys. These microstructures, in turn, strongly
influence the mechanical, physical, and chemical behaviors of the
material. Otherwise, they determine the qualities of the solidified raw
material and often the finished product. Thus, the understanding of
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these dendritic microstructures formation is technologically important
in order to produce better casts and pattern formation for advanced
materials. On the other hand, the dendritic growth is a very important
phenomenon in the process of solidification of materials used to
transfer energy. The applications can be for installations in which the
crystallization is required as the latent heat energy storages and the use
of phase change materials (PCM) [18,19], the distribution of energy
through diphasic liquid-solid heat transfer fluids [265], but also
installations where this crystallization needs to be avoided as it is the
case during the transport of liquid fluids in pipes [266,267]. The end of
the supercooling phenomenon and the beginning of the solidification of
the whole region are shown in Fig. 2 for a pure material. In fact, during
the propagation of dendrites through the supercooled liquid, the liquid
temperature returns to its equilibrium temperature of solidification.
This is due to the latent heat absorbed by the supercooled liquid, which
is released from the interface during this phase. Hence, one would like
to understand how the dendritic growth is driven or guided, in order to
improve the solidification processes by controlling or preventing it.

Furthermore, apart these engineering applications providing its
technical importance, dendritic growth also represents a pattern
formation phenomenon, which in recent years has become a deeply
researched subject in non-linear dynamics field.

The problem of dendritic growth has had a long and somewhat
tortuous history [20,21]: In 1611, even before the atoms were
discovered, Kepler drew attention to the shapes, numbers, and
geometric similarities exhibited by the six fold symmetry of snowflakes
[22]. The last 50 years have seen a renaissance of interest in this
problem focusing on the dynamics of crystal growth and how the
liquid-solid interface evolves during this phase, and it could be said
that many of the basics behind this behavior have reached a good level
of understanding to the satisfaction of researchers working on both
experimental and numerical aspects of this subject.

The essential purposes in the present review paper are first, to show
the available theories of dendritic growth in a simple manner to
provide the reader who is interested in this problem a good and
complete point of understanding and second, to present the different
numerical methods used to resolve this complex problem. Thus, the
paper is organized in five sections. In the second section, the dendritic
growth theories starting from the Mullins-Sekerka instability as well as
the history/evolution of the Gibbs-Thomson condition - which is used
to calculate the interface temperature which is different than the
equilibrium temperature due to the interfacial instabilities – are
presented. When Gibbs-Thomson equation is appropriate, it can be
coupled with the heat transport equations to give a complete under-
standing of the dendritic problem. The third section introduces the
mathematical governing equations of the problem including the last
presented Gibbs-Thomson condition at the interface. The fourth

Nomenclature

T Temperature [K]
Ti Initial temperature [K]
Tm Equilibrium temperature [K]
Tn Nucleation temperature [K]
Tc Coolant temperature [K]
δ Perturbation amplitude [m]
δD Diffusion length [m]
δC Capillary length [m]
Pe Péclet number
vt Tip velocity [m s−1]
rt Tip radius [m]
α Diffusivity [m2 s−1]
∆ Dimensionless supercooling
c Heat capacity [J kg−1 K−1]

ΔT0 Initial supercooling [K]
L Latent heat of fusion [J kg−1]
λc Cutoff wavelength [m]
Tf Interface temperature [K]
γ Surface tension [J m−2]
κ Twice of mean curvature [m−1]
Lv Volumetric latent heat [J m−3]
vn Normal velocity [m s−1]
υ Kinetic mobility [m K−1 s−1]
cv Volumetric heat capacity [J m−3 K−1]
θ Interface orientation [rd]
k Thermal conductivity [J m−1 K−1 s−1]
t Time [s]
ω Pulsation [rd s−1]
ρ Density [kg m−3]
n⎯→ the normal vector at the interface

Fig. 1. Dendrite growing into a supercooled melt of pure succinonitrile [103].
Fig. 2. Variation of the temperature (at the centre of a sample) in time, during
solidification process of a supercooled liquid. Phase b concerns the crystal growth.
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