
ARTICLE IN PRESS

Renewable and Sustainable Energy Reviews **I** (**IIII**) **III**-**III**

Renewable and Sustainable Energy Reviews

journal homepage: www.elsevier.com/locate/rser

Renewable energy from biogas with reduced carbon dioxide footprint: Implications of applying different plant configurations and operating pressures

Wojciech M. Budzianowski^{a,b,*}, Karol Postawa^b

^a Consulting Services, Poleska 11/37, 51-354 Wrocław, Poland

^b Renewable Energy and Sustainable Development (RESD) Group, Poleska 11/37, 51-354 Wrocław, Poland

ARTICLE INFO

Article history: Received 10 November 2015 Received in revised form 13 February 2016 Accepted 23 May 2016

Keywords: Renewable energy Biogas CO₂ footprint Biomethane Combined heat and power Pressurised anaerobic digestion

ABSTRACT

Renewable energy from biogas has the potential to decarbonise energy systems. For example, biomethane derived from raw biogas may partially displace fossil fuels in the transportation sector. The implemented renewable energy actually decarbonises energy systems only if its life cycle CO₂ footprint is lower than that of displaced conventional technologies, which is sometimes uncertain. Therefore, this study has been undertaken to review and synthesise knowledge available in the academic literature on the CO₂ footprint of renewable energy from biogas. The typical life cycle CO₂ footprint of biogas reported in literature is between 50 and 450 kgCO $_2$ /MW h_{el} . The review analyses three phases associated with biogas: (i) biomass production, (ii) biomass-to-biogas conversion, and (iii) biogas end use. It is found that remarkable CO₂ footprint reduction can be achieved by innovating the biomass-to-biogas phase through limiting the amount of CO₂ liberated to biogas. The mechanism for reducing CO₂ footprint is proposed and suitable solutions are discussed and evaluated. The literature review is followed by a case study that improves the practical understanding of CO₂ footprint reduction potentials. In the case study anaerobic digestion (AD) and pressurised anaerobic digestion (PAD) are compared in terms of their biomethane, power and heat generations, and CO₂ emissions. Six plant configurations involving AD, biogas upgrading and combined heat and power (CHP) generation are modelled and simulated. The results show that due to the methane enrichment in biogas (94% CH₄ at the self-sustained digester pressure of 5 MPa) CO₂ footprint is reduced. It is revealed that PAD based biogas plants may generate high purity biomethane with the extremely low direct CO₂ footprint of about 13 kgCO₂/MW h_f which contrasts with conventional CHP systems achieving about direct CO_2 footprint of 700 kg CO_2 /MW h_{el}. The study also explores the fundamentals of PAD which is one of emerging biogas technologies. *Corresponding author.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Clean and efficiently harvested renewable energy has potentials to reduce CO₂ footprint of energy systems. In developed societies energy demands are however so high that renewables with limited supply potential such as bioenergy, geothermal or hydro will be able to meet only a small proportion of future global

^{*} Corresponding author.

http://dx.doi.org/10.1016/j.rser.2016.05.076 1364-0321/© 2016 Elsevier Ltd. All rights reserved. energy demands. The largest contribution will have to therefore come from wind, ocean and solar sources. But wind, ocean and solar projects have limited lifetimes and if applied globally might consume a remarkable share of construction materials. Such renewables may therefore from one hand reduce CO_2 footprint of the energy sector but from other hand they may increase CO_2 footprint of the industrial sector, where the production of these construction materials creates additional CO_2 emissions. Therefore, the utilisation of wind, ocean and solar energies need to be carefully monitored and their life cycle CO_2 footprint including the large industries behind needs to be analysed at increasing penetration depths. Meanwhile economically feasible techniques minimising life cycle CO_2 footprint of all available renewable options such as biogas (comprising 35% CO_2) [1] needs to be developed and employed.

Please cite this article as: Budzianowski WM, Postawa K. Renewable energy from biogas with reduced carbon dioxide footprint: Implications of applying different plant.... Renewable and Sustainable Energy Reviews (2016), http://dx.doi.org/10.1016/j.rser.2016.05.076

Abbreviations: AD, anaerobic digestion; CBM, compressed biomethane; CHP, combined heat and power; CLM, cattle liquid manure; FM, fresh matter; LBM, liquefied biomethane; LCA, life cycle assessment; LCFA, long chain fatty acids; MCFC, molten carbonate fuel cell; MS, maize silage; OLR, organic loading rate; PAD, pressurised anaerobic digestion; SCFA, short chain fatty acids; SOC, soil organic carbon; TFEC, total final energy consumption

E-mail address: wojciech.budzianowski@gmail.com (W.M. Budzianowski).

2

W.M. Budzianowski, K. Postawa / Renewable and Sustainable Energy Reviews **E** (**BBBB**) **BBB-BBB**

Nomenclature		R_k	kinetic rate of reaction k , kgCOD/(m ³ day)
		S_i	concentration of component <i>i</i> dissolved in the liquid
ADF	acid detergent fibre, %m of TS		phase, kgCOD/m ³ or kmol/m ³
ADL	acid detergent lignin, %m of TS	Т	temperature, K
C_i	concentration of component <i>i</i> in a digester, $kgCOD/m^3$	t	time, day
C _{IN,i}	concentration of component <i>i</i> in feedstock, kgCOD/m ³	TRF	total raw fibre, %m of TS
CF _{mix}	CO ₂ footprint of electricity in the national energy mix,	TRL	total raw lipid, %m of TS
	kgCO ₂ /MW h _{el}	TRP	total raw protein, %m of TS
CF _{el}	CO ₂ footprint of electricity, kgCO ₂ /MW h _{el}	TS	total solids, %m
CF_{f}	CO_2 footprint of biomethane, kg CO_2 /MW h _f	V	digester volume, m ³
COD	chemical oxygen demand, kgO ₂ /m ³ FM	V_w	working volume of a digester, m ³
d	density of biomass, $(=1000 \text{ kg/m}^3)$	VS	volatile solids, %m of TS
DL _{VS}	degradation level of volatile solids, %	X_j^{ret}	concentration of retained microbes from group <i>j</i> ,
E ^{upgradin} Emix	^g electricity required for upgrading provided by external		kgCODproduct/m ³
	sources, MW h _{el} /yr	χ_{CH4}	volumetric CH ₄ fraction in biogas, -
F _{IN}	flow rate of feedstocks to AD digester, m ³ /day	Х_с	complex particulates, kgCOD/m ³
Fout	outlet flow from digester, m ³ /day	X_j	concentration of microbes from group <i>j</i> , kgCODpro-
f_ch	fraction of carbohydrates, kgCOD/kgCOD		duct/m ³
f_dg	fraction of digestible cellulose/hemicellulose, -	Y_j	yield of biomass of microbes from group <i>j</i> on uptake of
f_lip_LC	FA fraction of LCFA in lipids=0.95		substrate i,kgCOD product/kgCOD substrate
f_ine	fraction of particulate inerts (mostly lignin), kgCOD/	η_{el}	electrical efficiency of CHP, %
	kgCOD	η_{th}	thermal efficiency of CHP, %
f_lip	fraction of lipids, kgCOD/kgCOD	$ ho_{i,j}^{uptake}$	rate of uptake by microbes j a substrate i , kgCOD
fpr	fraction of proteins, kgCOD/kgCOD		substrate/(m ³ day)
G ^{CO2}	CO_2 emissions, kg CO_2 /yr	$v_{i,k}$	stoichiometric coefficient for component <i>i</i> in reaction
G_{el}^{CO2}	CO_2 emissions from electricity, kg CO_2 /yr		k, -
G_{el}^{CO2}	CO_2 emissions from biomethane, kg CO_2 /yr		
H_i	Henry's law constant for volatile component <i>i</i> , kgCOD/	indexes	
	(m ³ Pa)		
HRT	hydraulic retention time, day	b	biogas
Iupgrading	\int_{g}^{E} decay rate constant for the group <i>j</i> of microbes, 1/day	bn	biogas under normal conditions
k_i^{dec}	decay rate constant for the group <i>j</i> of microbes, 1/day	ch	carbohydrates
k_k^{react}	rate constant of bioreaction k, 1/day	CO_2	carbon dioxide (CO ₂)
k _L a	gas-liquid mass transfer coefficient, 1/day	d	digester (#1 or #2)
M	amount of CO_2 emitted from combustion of CH_4 , CO_2	dg	digestible cellulose/hemicellulose
	density, $= 1.96 \text{ kgCO}_2/\text{Nm}^3$	Ē	energy
MDecay	v_j growth rate of the <i>j</i> -th group of microbes, kgCOD-	el	electricity
	product/(m ³ day)	f	fuel, biomethane
MGrow	<i>th_j</i> growth rate of the <i>j</i> -th group of microbes, kgCOD-	fa	fatty acid
	product/(m ³ day)	IN	inlet, feedstock
Ni	rate of gas transfer of component i to the gaseous	i	chemical component i, e.g. EAN-elemental anions, OH-
	phase, kgCOD/(m ³ day)		OH ⁻ , HCO3-HCO ₃ ⁻ , ACI-acetate ions, PROI-propionate
NCV	net calorific value of biomethane, =0.00994 MW h/		ions, BUI-butyrate ions, VAI-valerate ions, H-H ⁺ , CAT-
	Nm ³ , 35.8 MJ/Nm ³		cations, NH4-NH ₄ ⁺
NDF	neutral detergent fibre, %m of TS	j	microbial group <i>j</i>
NfE	nitrogen free extracts, %m of TS	k	reaction k
OXD	oxygen demand of total solids, kgO ₂ /kgTS	lip	lipids
p	pressure, Pa	mix	mixture
P_{el}	electrical power, MW h _{el} /yr	NR	number of reactions
P _{th}	thermal power, MW h _{th} /yr	OUT	outlet
Q_b	amount of produced biogas, m ³ /yr or m ³ /day	рі	particulate inerts (mostly lignin)
Q_{bN}	amount of produced biogas in normal conditions	pr	proteins
	N m ³ /yr or N m ³ /day	th	thermal
Q_f	amount of produced biomethane, $N m^3/yr$ or $N m^3/yr$		
	day		
<u> </u>			

Research on CO_2 footprint of renewable energy from biogas is particularly relevant today since from one hand state-of-the-art biogas based CHP systems have lower CO_2 footprint than fossil fuel based counterparts, but from the other hand these options may have higher CO_2 footprint than some other bioenergies such as wood pellets based CHPs [2]. This calls into question the role of renewable energy from biogas in providing low-carbon energy with state-of-the-art technologies. The problem will be more important in near future when the CO_2 footprint of national energy mix drops. Under low CO_2 footprint of the national energy mix there will be greater competition between renewable energy options and life cycle CO_2 footprint might be one of essential selection parameters.

In a broader context renewable energy at its realistic penetration depths may not be sufficient to significantly limit $\rm CO_2$

Download English Version:

https://daneshyari.com/en/article/5483413

Download Persian Version:

https://daneshyari.com/article/5483413

Daneshyari.com