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A B S T R A C T

Many important variables for reservoir development and production cannot be derived analytically from con-
tinuous well logs. Empirical regression and classification techniques have been widely used to predict these
variables from well logs. This approach generally uses data from core analysis and well logs to train a model,
which then can be used to estimate a variable where core analysis data are not available. In formation eva-
luation, the amount of training data is limited or costly to acquire. This may result in regression models having
limited predictability. This paper addresses the problem of sparse data by using fuzzy logic and ensemble neural
networks to estimate coal ash content from a collection of sparse data. Ash content is a significant parameter to
evaluate coal quality and it is usually measured from proximate analysis in the laboratory. Ash content is es-
timated based on the components of six major oxides (Al2O3, SiO2, K2O, CaO, Fe2O3 and TiO2) by using an X-ray
fluorescence technique. We first use fuzzy curve analysis to rank the relationships between well log and ash
content data to determine input parameters for estimating ash content. The data sets were then sampled with a
bootstrap-aggregating algorithm to create a number of training sets for building ensemble neural networks. The
neural networks in the ensembles were trained individually and the outputs were combined to estimate ash
content. In total 20 core samples were collected from a New South Wales (Australia) coal bed methane well in
the Gloucester Basin and analyzed for ash content. The well was analyzed using density, photoelectric, gamma
ray, neutron, acoustic, resistivity, spontaneous potential, and resistivity imaging logging techniques. The tested
algorithm produces repeatable ash content prediction (standard deviation of repeated predictions is 0.43%) and
effectively reduces the prediction variance and bias compared to the single neural network with early stopping
algorithm. The workflow is data-driven and could be used to estimate other complex variables that are required
when evaluating coal beds.

1. Introduction

The petrophysical properties of rocks are required for the evaluation
of hydrocarbon reservoirs and are often inferred from well logging data.
Well logging provides continuous evaluation of formation properties
that can be interpreted as rock properties, mineralogy and sedimentary.
Basic logging data can be interpreted to determine lithology and facies
of a reservoir (Serra, 1984). Furthermore, spectral natural gamma ray
adds details to mineralogy evaluations, while imaging tool data adds
details to sedimentary studies. Interpretations of well logging data are
often based on empirical relations of well log data to core sample
analysis in laboratory. An interpretation model is trained/calibrated
with the core sample analysis data, then used to evaluate intervals
where core samples are not available. Calibrating reservoir properties
such as permeability and porosity to well logging data by using

statistical methods such as fuzzy logic and neural networks have been
used in traditional and unconventional reservoir exploration for more
than thirty years and the quality and range of measurement capabilities
and methodology are improving (Lin and Cunningham, 1995; Wong
et al., 1998; Helle et al., 2001; Saggaf and Nebrija, 2003; Ilkhchi et al.,
2006; Abdulraheem et al., 2007; Nashawi and Malallah, 2010; Zerrouki
et al., 2014; Ghosh et al., 2016).

Coalbed methane (CBM) reservoirs are complex and classified as an
unconventional resource of energy (Mostaghimi et al., 2017). Current
log evaluations of coal ash content are based on density log data by
regression approaches to determine an empirical relationship between
well log and lab measurements (Agostini, 1977; Daniels et al., 1983;
Mullen, 1989; Fu et al., 2009). Agostini (1977) built a linear relation-
ship between ash content from proximate analysis and high resolution
density logs. However, it only had± 39% accuracy for predicted ash
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content at 90% confidence level. Mullen (1989) developed another
linear relationship between ash content from core analysis and bulk
density log with variable results. Because of the variability of coals, the
relationships are only valid regionally. Finding empirical relationships
between well log and coal properties requires an adequate amount of
data and measurement ranges. However, data sets available for eva-
luation are often small and sparse, due to the high cost and other
technical factors involved in obtaining core samples. In addition, log
evaluations of thin beds are challenging, especially when the properties
of the adjacent beds are in high contrast, such as in coal and silt se-
quences that are very common in CBM reservoirs. For example, in the
CBM reservoir evaluated in this work, single coal seams are usually
interlayered with siltstone and/or sandstone. Bed boundary effects on
log readings are inevitable and thus add to the complexity to the ana-
lysis.

Ash content or proximate analysis is an important measure for coal
since it determines the quality of the coal. The relationship between ash
and well logging data is often built based on proximate analysis in the
laboratory (Agostini, 1977; Daniels et al., 1983; Mullen, 1989; Ghosh
et al., 2016). These papers built a relationship between well logging and
coal ash, which is measured by X-ray fluorescence (XRF) technique. Kiss
(1966) was the first to determine the major inorganic elements of coal
by XRF. Afterwards, Kuhn et al. (1975) demonstrated the trace ele-
ments of coal. He found that some variations occur at higher trace
element concentrations especially in the more roughly ground coals.
Evans et al. (1990) examined major elements by WD-XRF and trace

elements by ED-XRF in coal ash. In particular they examined Chlorine
and phosphorus in coal core plugs. Kimura (1998) calculated ash con-
tent from the sum of major element and also found the relationship
between the inorganic elements and related minerals in coals by com-
bining XRF and XRD. Kelloway et al. (2014) examined coal element
characteristics and calculated the major element oxides related to the
total ash and relative density by Itrax XRF techniques that can scan
entire cores. With the aid of XRF, coal ash and relative density can be
estimated and can improve the accuracy of well log analysis in CBM
reservoirs.

Artificial neural network (ANN) approaches have been extensively
used to interpret petrophysical properties in hydrocarbon reservoirs
(Huang et al., 1996; Wong et al., 1998; Weiss et al., 2001). Compared
with traditional empirical and multiple regression equations, ANN is a
non-linear method that does not require a priori selection of the
mathematical model (Huang et al., 1996). It is particularly useful when
the analytical model for well log evaluation has not been defined, due
to the complexity of the rock. Applying ANN to small data sets tends to
produce output with high variance, which depends heavily on how
partitioning of the available data into training, validation and testing
subsets is conducted (Bui et al., 2008). To improve estimation from
small data sets, instead of using a single ANN model, several models
with randomly sampled input, random weight and biases are trained
individually and then combined into an ensemble neural network. Each
network model produces generalisation errors on different subsets of
input data; however, the collective decisions by the ensemble tend to
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Fig. 1. Location and surface geology of the gloucester basin.
Modified after AGL geology of the gloucester basin.
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