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A B S T R A C T

General purpose reservoir simulation is based on the solution of governing equations describing mass and energy
transfer in the subsurface. The solution process requires the linearization of strongly nonlinear governing equa-
tions. Usually, a Newton-based method is used for the linearization. This method demands the assembly of Ja-
cobian and residual for a fully coupled system of equations. Recently, a new linearization approach was proposed
and tested for binary systems. The key idea of the Operator Based Linearization (OBL) approach is to transform
the discretized mass and energy conservation equations to an operator form which separates space-dependent and
state-dependent properties of governing equations. This transformation provides the opportunity to approximate
the representation of exact physics (physical properties) of a problem. Specifically, each term of the conservation
equations is presented as the product of two different operators. The first operator depends on the current physical
state of a system and contains fluid properties, such as density, viscosity, relative permeability, etc. The second
operator captures both spatially altered properties, such as permeability, and the rest of state variables, such as
pressure in the discrete approximation of gradient. All state-dependent operators are uniformly parametrized
within the physical space of the problem (pressure-composition intervals). During simulation process, a multi-
linear interpolation is applied to approximate the first type of operators, while the second type of operators is
processed based on conventional approach. In this work, we extended the approach to thermal systems with an
arbitrary number of components. Besides, we significantly improved the performance of OBL employing adaptive
parametrization technique. We tested the approach for truly multi-component thermal systems of practical in-
terest. The computational performance, accuracy, and robustness of a new method were demonstrated against the
conventional approach.

1. Introduction

Numerical simulations are essential for the modern development of
subsurface reservoirs (Aziz and Settari, 1979). They are widely used for
the evaluation of oil recovery efficiency, performance analysis, and
various optimization problems. Due to the complexity of underlying
physical processes and considerable uncertainties in the geological
structure of reservoirs, there is a persistent demand for accurate and
efficient models. In order to increase the accuracy of a model, one can
apply a finer computational grid in space or time, or use a more detailed
description of the fluids such as in thermal-compositional model. How-
ever, the improvement in the accuracy of models is usually counter-
balanced by the reduction in the turnaround time of simulation. In the
presence of ensemble optimization or stochastic solution based on a
version of Monte Carlo approach, demanding thousands of simulations,
the performance of forward simulation becomes a primary issue (Muller
et al., 2016).

Space and time approximations usually introduce nonlinearity to
the system of governing equations, further enhanced by complex
behavior of multiphase fluid flow. Numerical solution of such systems
with millions of unknowns is the only known way to complete simu-
lation in feasible time. The particular set of independent variables (i.e.,
nonlinear unknowns) is defined by the nonlinear formulation of the
actual simulation framework (Cao, 2002). During linearization stage,
all properties and their derivatives need to be determined with respect
to nonlinear unknowns. The linearization of the nonlinear system re-
quires Jacobian assembly and consumes a significant portion of simu-
lation time, especially for complex physical processes (Zaydullin
et al., 2016).

Several conventional linearization approaches exist, though neither
of them is robust, flexible, and computationally efficient all at once.
Numerical derivatives provide flexibility in the nonlinear formulation
(see Xu et al., 2011 for example), but a simulation based on numerical
derivatives may lack robustness and performance (Vanden and
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Orkwis, 1996). Straightforward hand-differentiation is the workhorse
strategy in modern commercial simulators (Schlumberger, 2007; Cao
et al., 2009). However, this approach requires introduction of a
complicated framework for storing and evaluating derivatives for
each physical property, which in turn reduces the flexibility of a
simulator to incorporate new physical models and increases proba-
bility for potential errors. The development of Automatic Differentia-
tion (AD) technique allows preserving both flexibility and robustness
in derivative computations. In reservoir simulation, the AD-based li-
brary (ADETL) was introduced by Younis (2011). Using the capabil-
ities of ADETL, the Automatic Differentiation General Purpose
Research Simulator (ADGPRS) was developed (Voskov and Tchelepi,
2012; Zhou et al., 2011). Later, the AD technique becomes more
demanded in research frameworks for reservoir simulation (Krogstad
et al., 2015). Being attractive from the perspective of flexibility, the
AD technique by design inherits computational overhead, which af-
fects the performance of reservoir simulation (Khait and Vos-
kov, 2017).

A novel linearization approach called Operator-Based Linearization
(OBL), where performance, robustness, and flexibility can be combined
without compromise, was introduced in Voskov (2017). Each term in
discretized conservation equations is represented by the product of two
operators: state- and space-dependent. The state-dependent operators are
adaptively parametrized over the physical space of a simulation problem,
while space-dependent operators are applied in the conventional
manner. During the course of the simulation, the state-dependent oper-
ators are calculated based on the multilinear interpolation in multidi-
mensional space of nonlinear parameters. The performance gain of
Jacobian assembly with OBL reaches an order of magnitude (Khait and
Voskov, 2017).

In this paper, we extend the OBL method to a general purpose
thermal-compositional reservoir simulation. ADGPRS is used as an
implementation framework and as the reference approach for fidelity and
performance comparisons. We apply the extended OBL to the several
reservoir simulation problems of practical interest. Better nonlinear
performance with the coarser representation of physics is demonstrated,
while the approximation error is controlled by the resolution of the
interpolation tables. Several advantages and extensions of the proposed
method are discussed in the conclusion.

2. Conventional modeling approach

In this section, we describe one of the conventional nonlinear for-
mulations for a general purpose thermal-compositional model. This
formulation was implemented in ADGPRS (Voskov and Tchelepi, 2012)
and is used in this paper as the reference solution.

2.1. Governing equations

Here, we describe the flow of energy and mass in a system with np

phases and nc components. For this model, nc component mass conser-
vation equations and a single energy conservation equation need to be
written as
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All terms of the system (1)–(2) can be characterized as functions of
the spatial coordinates ξ and physical state ω as follows:

� ϕðξ;ωÞ – effective rock porosity,
� xcpðωÞ – component concentration in phase,
� ρpðωÞ – phase molar density,
� spðωÞ – phase saturation,
� u!pðξ;ωÞ – phase velocity,
� ~qpðξ;ω;uÞ – source of phase,
� UpðωÞ – phase internal energy,
� Urðξ;ωÞ – rock internal energy,
� hpðωÞ – phase enthalpy,
� κðξ;ωÞ – thermal conduction.

The only exception here is the phase source term which also depends
on u – well control variables.

Next, for simplicity, we assume that the rock internal energy and
thermal conduction are spatially homogeneous, thus

Ur ¼ f ðωÞ; κ ¼ f ðωÞ: (3)

Phase flow velocity is assumed to follow the Darcy law as

u!p ¼ �
�
K
krp
μp

�
∇pp � γ!p∇D

��
; (4)

where

� KðξÞ – effective permeability tensor,
� krpðωÞ – phase relative permeability,
� μpðωÞ – phase viscosity,
� ppðωÞ – phase pressure,
� γ!pðωÞ – gravity vector,
� DðξÞ – depth (backward oriented).

After application of a finite-volume discretization on a general un-
structured mesh and backward Euler approximation in time, we get

where V is the control volume of a grid cell and qp ¼ ~qpV is the source of a
phase p. Here, we have neglected capillarity, gravity and used Two-Point
Flux Approximation (TPFA) with upstream weighting. Therefore, Δψ l
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