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A B S T R A C T

History matching is an iterative process that modifies a reservoir model to reproduce field behavior. Due to the
scarcity of data the true distribution of facies, porosity and permeability between widely spaced wells is unknown,
resulting in high uncertainty.
As the spatial patterns of permeability and porosity often significantly affect the flow response, evaluating het-
erogeneity is key in history matching.
This work presents a stochastic method for use in probabilistic and iterative history matching. We select a set of
the best geostatistical realizations and reproduce their spatial patterns in subsequent iterations to create a new set
of better-matched models. All models, throughout the process, honor well log data and continuity, modeled with
the variograms.
This paper uses four approaches: two using a global method and two using a regional method. Both methods
improved dynamic history data matching while honoring all well data but each is suited to different times in
exploration and production.
We present the global method as a simple tool to improve models. Characterized as an update of the entire
reservoir, it is useful when the number of wells and the dynamic history data are scarce. The regional method is
more efficient to process large amounts of information, enabling the independent match of dynamic well data,
avoiding mismatches with other wells.

1. Introduction

One of the most important activities in the oil industry is forecasting
reservoir production. Reservoir models should consider all available data
(seismic, well logs, cores etc.) to improve reliability.

Despite the possibility of obtaining a single model that fully respects
all information and observed production data, a set of scenarios can be
useful to provide alternative forecasts, even if they all reproduce the
same history data (Maschio et al., 2010).

Simulated models are calibrated using historical data (known as
history matching) to achieve sufficient reliability to perform risk analyses
and support decisions.

History matching is an inverse problem, in which we use the known
solution (real production data) to find the parameters (permeability and
porosity). The global framework of a history matching process is based
on minimizing an objective function that quantifies the mismatch be-
tween the history data and the simulated data through an iterative

process. These parameters can include petrophysical parameters such as
porosity, permeability or net-to-gross ratio, and other parameters, such as
oil-water contact, rock compressibility and relative permeability.

Heterogeneity is responsible for the location of high permeability
channels, barriers and other events that affect flux, pressure, the time it
takes water to reach the well and other data used to evaluate reservoir
behavior. Therefore, reducing uncertainty in the spatial distribution of
petrophysical properties improves accuracy in history matching.

In traditional history matching, mismatched regions are modified
using a multiplier in geostatistical parameters (porosity, permeability
etc.), until an acceptable value is reached (Mattax and Dalton, 2000;
Miliken et al., 2001). This method can produce good results when
matching production data. However, it does not account for any
geological, geophysical or petrophysical knowledge of the reservoir, and
usually creates models without structural consistency. So, even if the
model does respect history data, long-term forecasting is likely to be
inaccurate.
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The main challenge when modeling a reservoir is to respect all well
data and geological analyses, while reproducing observed production
data. The complexity of history matching lies in the number of variables
that the model must honor and the multiple solutions that create the
same answer (inverse problem).

Geostatistics has gained special attention in recent years as a tool that
honors all well data, reservoir structure and reservoir continuity. It has
the advantage of creating a set of equiprobable images, allowing the
analysis of different solutions to the inverse problem. For this reason,
various studies have integrated geostatistics with history matching.

Geostatistical history matching procedures are usually based on sto-
chastic simulations to perturb parameters within the iterative loop pro-
cedure. Following are methods used in history matching procedures
summarizing the advantages and disadvantages.

Gradual deformation uses a linear combination of independent re-
alizations (Hu, 2000; Roggero and Hu, 1998) to generate new and
improved models. The disadvantages are that it is only applicable in
Gaussian fields; it must be near the solution to converge rapidly, inte-
gration of secondary information is difficult, and it may not keep the
structure in models with high continuity such as channels. However, the
method is quite simple, flexible and can be used globally or regionally.

To explore the application of this method in non-Gaussian fields, Hu
et al., 2001 used the same principle to locally perturb three facies using
Sequential Indicator Simulation (SIS). They concluded that the method
was applicable in a wide range of situations, producing good results.

There are two types of perturbation: global and local. Global pertur-
bation is of the entire reservoir at once, based on the average mismatch of
all wells. Local (or regional) perturbations depend on individual well
mismatches and are performed within the influence areas of each well.
Global perturbation is easy to implement but the convergence for all
wells is difficult, as it disregards the individual speed of convergence of
each well. Local perturbation requires defined areas of influence local for
each producer or injector well.

Gervais et al. (2007) compared the gradual deformation method
when applied globally or regionally. He concluded, when using the
regional method, that maximum speed of convergence is higher and the
minimum, lower, for the objective function. They used a Voronoi polygon
for each well to divide the reservoir into areas of influence for different
wells and grouped them according to (1) Voronoi polygons with the same
match quality, (2) polygons in the same streamlines.

Mata-Lima (2008a,b) suggested another method to perturb geo-
statistical realizations, using Direct Sequential Co-simulation (Soares,
2001) to constrain the pattern of a reservoir image.

Co-simulation was first used to integrate secondary information into
the data that one wanted to simulate. Starting by integrating seismic data
to achieve porosity, and integrating porosity to simulate permeability. In
the work developed by Mata-Lima, co-simulation was used to guarantee
that, once the user selected an image, the subsequent iterations would
respect that image pattern. The selected image was used as a secondary
variable in co-simulation.

Mata-Lima (2008a) proposed and tested an algorithm in a simple
reservoir, composed of a single layer of grid blocks. The square grid
blocks had a uniform thickness of 10 m. All tests were done constant
porosity, with only the permeability field characterization missing. The
reservoir was composed of three wells, one injector and two producers.

He concluded that the proposed algorithm preserved the variogram
and histogram of permeability since the co-simulation uses a Markov
approach. This approach requires only the variogram of the original
variable and the correlation coefficient between primary and secondary
variables to produce new stochastic realizations.

Despite the simplicity of the case, the promising results prompt
further testing of the methodology in more complex cases. Some other
case studies have used co-simulation to history match a reservoir model
(Caeiro et al., 2013, 2014). tested co-simulation in a 2D anisotropic
synthetic case improving the consistency of the good results achieved in
Mata-Lima (2008a,b).

In this work, we implement the global outline, set out in previous
works, in more complex and realistic situations. We reduce the initial set
of widely variable scenarios through an iterative process, reaching an
acceptable range. Choosing geostatistical realizations from previous it-
erations and using them as input in co-simulation, we can reproduce
well-matched models Oliveira (2014).

Note that the image perturbation method we propose is different from
the methodology used to modify other parameters. In this work, we only
consider the spatial distribution of reservoir properties; we do not expect
to achieve a perfect match, but to significantly improve the initial model's
responses. For a complete history matching, it is essential to include all of
the model's parameters and uncertainties.

2. Stochastic simulation methods

The first step in performing image perturbation is to select the geo-
statistical parameters to optimize and explore. Secondly, we choose a
stochastic simulation method suitable for these parameters and the case.
All parameters must be simulated with a continuous and conditional
method, such as co-SGS or co-DSS or, for categorical variables, be
dependent on a continuous variable. We used the Sequential Gaussian co-
simulation to simulate continuous variables and the Truncated Gaussian
Simulation for categorical variables that can be evaluated as a function of
a continuous, pre-simulated variable.

The stochastic model reproduces the variability of the properties,
namely the distribution function, which guarantees the frequency of the
different classes of the histogram. A variogram reproduces spatial con-
tinuity of the studied variable. To use co-simulation, two more variables
are necessary; a secondary image with the pattern that we want to honor
in the following iteration and a correlation coefficient to gauge the
strength of the pattern to be honored.

2.1. Sequential Gaussian co-simulation

The Sequential Gaussian co-Simulation (co-SGS) algorithm is based
on the multiGaussian assumption of variable y(x). Hence, any local
conditional expectation and conditional variance can be identified by
simple kriging estimates. Any local Gaussian distribution is totally
defined with the conditional mean and variance and the sequential
simulation proceeds by generating a realization of local distributions
according a random path (Goovaerts, 1997).

Equation (1) represents the simple kriging co-estimation,

Y�ðuÞ � my ¼
Xn

∝¼1

λα
�
YðuαÞ � my

�þ υ½BðuÞ � mB� (1)

where Y*ðuÞ is parameter Y to be simulated in point u, my is the sta-
tionary mean of parameter Y , YðuαÞ is all the points simulated till that
time, λα is the weight given to each point calculated by kriging estima-
tion, BðuÞ is the secondary variable in point u, mB is the stationary mean
of parameter B, and υ is the correlation coefficient between variable Y
and B.

The correlation coefficient is an important parameter that measures
how much the pattern should be honored in the next iteration. It can be
between�1 and 1 and, for values near 1, the pattern is fully respected. As
long as the value decreases, some flexibility is given for the following
images, making it possible for the user to explore other similar options for
the spatial distribution of that property.

2.2. Categorical variables - Truncated Gaussian simulation

The key idea of Truncated Gaussian Simulation is to choose a
continuous property and set different classes inside the values of that
property (Deutsch, 2002). For each class, a different value is set for the
categorical attribute.

In traditional geostatistical modeling, porosity is simulated while
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