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Abstract

Natural fractures, hydraulic fractures, and acid etched fractures have some degree of fracture surface roughness. These
surface asperities are largely responsible for the hydraulic conductivity of these fractures. This paper presents a model to
quantify the fracture closure process that is crucial to predicting the stress dependent conductivity of fracture networks in
unconventional reservoirs and estimating the minimum in-situ stress using fracture injection tests. Past studies that have
investigated the fracture closure process have assumed the fracture surfaces to be two parallel plates closing in uniformly on
rough surfaces and asperities. In reality hydraulically induced fractures are wider in the middle and narrower near the
fracture tip. As a result, asperities on the rough fracture surfaces come into contact near the fracture tip well before they do
near the middle of the fracture. The evolution of the entire fracture geometry and its impact on stress redistribution and
dynamic fracture closure behavior has not yet been investigated.

In this paper, we present a method and general algorithms to model the dynamic closure behavior of a hydraulic fracture
while accounting for the initial fracture shape, rough fracture surfaces and deformation of asperities in contact. Analytic
solutions from linear elastic fracture mechanics for three fracture models (PKN, KGD and radial fracture geometry) are
coupled with a general contact law to show that the fracture closure process is a gradual, non-local process, which occurs at
the fracture edges initially and then moves progressively to the center of fracture, as the fluid pressure inside the fracture
declines. Our study also reveals that the minimum in-situ stress should not be picked at the occurrence of mechanical
closure as conventional practice suggests.
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Nomenclature

a  Half fracture height (PKN model) or half fracture length (KGD model), m.

a,, Half fracture height (PKN model) or half fracture length (KGD model) or local fracture radius (Radial model) at the
start point of the m™ segment along a discretized fracture, m.

A Fracture surface area of one face of one wing, m.

E  Young’s modulus, Pa

E’  Plane strain modulus, Pa

hg  Fracture height, m.

I Integration operator for PKN and KGD model

Py Fluid pressure inside fracture, Pa

Py Net pressure/stress, Pa

PyermNet pressure/stress at the m™ segment along a discretized fracture, Pa

r  Local fracture radius, m.

rp  Normalized radius

Ry Fracture radius, m.

R1 First integration operator for Radial model

R2 Second integration operator for Radial model

s Dummy variable

Sy Fracture stiffness, Pa/m.

u  Dummy variable

V;  Fracture volume of one wing, m.?

w, Contact width, m.
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