
Contents lists available at ScienceDirect

Journal of Petroleum Science and Engineering

journal homepage: www.elsevier.com/locate/petrol

Effects of initial curvature on coiled tubing buckling behavior and axial load
transfer in a horizontal well

Xing Qin⁎, Deli Gao⁎, Xuyue Chen

MOE Key Lab of Petroleum Engineering, China University of Petroleum, Beijing 102249, China

A R T I C L E I N F O

Keywords:
Coiled tubing
Initial curvature
Buckling load
Axial load transfer

A B S T R A C T

This paper builds an analytical model to describe the comprehensive buckling behavior of coiled tubing (CT)
with initial curvature in a horizontal well. The new buckling equation and contact force considering the effect of
initial curvature is built on the basis of beam-column theory. With the new contact force expression, the work
done by lateral friction can be obtained, thus the total potential energy of CT with initial curvature can be
calculated. By use of the principle of virtual work and energy conservation, the critical sinusoidal and helical
buckling load can be obtained. Moreover, the effect of initial curvature on axial load transfer is also calculated by
a new axial load equation. The calculation results indicate that initial curvature has a strong influence on
buckling loads and a CT with initial curvature is less efficient for axial load transfer compared to a straight CT.
To verify the proposed model, the results of this paper are compared to experimental results, which support the
proposed solutions.

1. Introduction

The buckling behavior of tubular has been studied for more than
half centuries. Lubinski (1950); Lubinski and Althouse, 1962) first
systematically analyzed the 2D lateral buckling and 3D helical buckling
of drill string in vertical wells, and derived the relationship between the
critical axial load and the pitch of helix. Dawson and Paslay (1984)
derived the first, now well-known, expression [Eq. (1)] for the critical
sinusoidal buckling load of a tubular constrained in an inclined
wellbore.
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where Fcrs is the critical sinusoidal buckling force, q is the tubular
weight per unite length, ϕ is the inclination angle of the wellbore, EI is
the bending stiffness, rc is the radial clearance between the tubular and
wellbore.

Mitchell (1988) first established the buckling equation describing a
pipe constrained in an inclined wellbore. He also derived the tubular
contact force.
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where θ is the angular displacement, N is the normal contact force. F is
the axial force and z is the coordinate along the wellbore axis.

From then on many researchers found the same formula [Eq. (1)]
for critical sinusoidal buckling force. However, unlike the consistent
critical buckling point between the initial straight configuration and
sinusoidal configuration, there is no consistent model to represent the
transition from sinusoidal to helical buckling (Miska et al., 1996;
Mitchell, 1997). Chen et al. (1990) first derived the expression of the
critical helical buckling load in a horizontal well. Wu (1992) pointed
out that Chen's result was an average value of the critical sinusoidal
and helical buckling loads, and deduced another buckling load. In the
next few years, Gao et al. (1998), Gao and Huang (2015), Liu (1999)
and Huang et al. (2015a, 2015b) studied buckling behaviors by using
both the energy method and the tubular-buckling equations. Table 1
summarizes the values of the critical buckling loads proposed by the
above researchers. These different forms of critical buckling loads are
deduced under different assumptions about the axial load in the entire
loading process.

At the same time, effects of friction on tubular critical buckling
loads have been studied analytically and experimentally. Mitchell
(1988, 2007) studied the complexity of friction and derived the critical
loads for two simple cases with friction in vertical wells. Suryanarayana
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and McCann (1995) and McCann and Suryanarayana (1994) con-
ducted experiments on pipe buckling with friction. Gao and Miska
(2009, 2010) investigated the effects of friction on pipe buckling in a
horizontal well, and the results showed that friction had increased the
buckling load by 30–50%. Recently, Su et al. (2013) presented a theory
to reveal the initiation of rod instability under initial velocity.

However, all these models typically assumed that the tubular was
initially straight in the wellbore. This assumption is suitable for
tubulars like dill pipe, tubing, casing and so on, but for coiled tubing
(CT). In fact, all real CT has minor initial bending. During operations,
the CT is unspooled from the reel and bent on the gooseneck.
Throughout the process, CT goes through four times bending-straight-
en deformation, and every bending deformation makes the CT into
plastic state resulting in residual bending. After entering into the
wellbore, the CT is not straight but has an initial configuration.

As to our knowledge, only several studies considered the effect of
residual bending. Miska et al. (1996) observed the effect of residual
bending on pipe in experiment. Qiu et al. (1997, 1999) established a
model to analyze the effect of CT initial configuration on sinusoidal and
helical buckling behavior in deviated wells. Zheng and Adnan (2005)
also noticed the questions of residual bending in CT, and he assumed
the initial configuration of CT was in the form of a helix. However, the
friction was neglected in all of these models.

The common practice to handle CT residual bending is to increase
the friction coefficient in conventional model to account for it. But how
does residual bending exactly affect the critical buckling loads under
the condition of friction? How does residual bending affect the axial
load transfer? It is important for us to answer these two questions. In
this paper, we first focus on the buckling analysis about the critical
conditions (or critical loads) above which CT will change its configura-
tion from one type into another. By using beam-column method, new
governing differential equation and normal contact force are derived.
In order to get the analytical solutions, the critical sinusoidal and

helical buckling loads are derived with the energy method. Since the
contact force between CT and wellbore is obtained, the effect of friction
can be considered as a dissipative term, and incorporated into the
generalized potential. When the initial CT configuration is straight,
buckling solutions of the new equations are identical with previous
conventional results. Secondly, by considering the axial friction, the
effects of initial curvature on axial load transfer are also analyzed. The
model proposed in this paper does not intend to replace, but rather
complements existing domain models. Through these analysis, we find
the initial curvature has a significant effect on CT buckling behavior,
and these new results allow for accurate job design to operate CT in the
wellbore.

2. Mathematical model

2.1. Major assumptions

In order to build the tubular analysis model, the following major
assumptions are applied.

1. The wellbore is a horizontal straight cylinder.
2. The CT is in continuous contact with the wellbore wall. In the

sinusoidal buckling stage, the CT snakes along the low surface of the
wellbore. While in the helical buckling stage, the CT buckles as a
helix spiraling around the inner surface of the wellbore wall.

3. The slender-beam theory is used to relate bending moment to
curvature.

4. The initial amplitude of CT angular displacement is small.
5. At the onset of instability only one buckling mode dominates.

2.2. Geometric description

The O-xyz coordinates are shown in Fig. 1. The origin of the
Cartesian coordinates is set at the center of the cross section of the
wellbore at the leftmost end. The z axis points horizontally from left to
right along the axis of the wellbore. The x axis points vertically

Fig. 1. Coordinate system for buckling analysis.

Nomenclature

A0 initial amplitude of the sinusoidal configuration, radians
A final amplitude of the sinusoidal configuration, radians
EI bending stiffness, lbf-in2
f1 axial friction coefficient
f2 lateral friction coefficient
F axial compression force, lbf
q tubular weight per unite length, lbf/ft
L length of CT, ft
ϕ inclination angle of the wellbore, degrees
rc radial clearance between CT and wellbore, ft
θ0 CT initial angular displacement, radian
θ CT final angular displacement, radian
p0 initial “wave-length” of CT, 1/ft
ps final “wave-length” of CT, 1/ft
ph final “pitch” of CT, 1/ft
N normal contact force, lbf
x0, y0 initial lateral displacements, ft
x, y final lateral displacements, ft

C1, C2 functions of initial CT configuration
C3, C4 dimensionless functions of initial CT configuration
h distributed force, lbf
M moments on the cross section of the CT, lbf-ft
β dimensionless axial load
βL dimensionless axial load at the loading end
βD dimensionless axial load at the dead end
U elastic deformation energy, lbf-ft
W work done by external force, lbf-ft
∏ total potential energy, lbf-ft
Ω dimensionless total potential energy
k1 number of half-sinusoidal waves
k2 number of complete helix turns

Subscripts

crs critical value for sinusoidal buckling
crh critical value for helical buckling
f friction
b bending

Table 1
the values (F F/ crs) of critical buckling loads for different buckling models.

Researchers Straight Sinusoid Transition Helix

Chen et al. (1990) [0, 1] [1, 2 ] / [ 2 , ∞]
Wu (1992) [0, 1] [1, 2 2 −1] / [2 2 −1, ∞]
Miska et al. (1996) [0, 1] [1, 1.875] [1.875, 2 2 ] [2 2 , ∞]
Mitchell (1997) [0, 1] [1, 2 ] [ 2 , 2 2 ] [2 2 , ∞]
Gao et al. (1998) [0, 1] [1, 1.401] / [1.401, ∞]
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