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A B S T R A C T

The transport of solid particles in pipelines is of interest in the petroleum industry, and is needed to increase
flow efficiency in the pipe and prevent pipeline damage due to the particles’ accumulation. To achieve this goal,
the velocity of the carrier fluid in the pipe needs to exceed the threshold velocity. Many solids transport models
are available for predicting the threshold velocity, but for the same input condition, the predictions of these
models may vary by orders of magnitude, and information regarding the confidence of the models’ predictions is
not readily available. To resolve these issues, this paper presents a model evaluation and uncertainty
propagation approach that uses a novel combination of data clustering, model parameter fine-tuning, model
screening and ranking, model uncertainty quantification, and Monte Carlo simulation methods. The inputs are
the experimental database for solids transport, a set of solids transport models, and the input condition(s)
where the models’ predictions are needed. The outputs of the methodology include the models’ rankings, and
the envelopes of the models’ predictions to within a predetermined confidence level. By propagating the
uncertainties of the models, experimental data, and input conditions, the highest-ranked models produce
velocity envelopes at the 90% confidence level that cover the experimentally-observed values for 92% of the
cases; while using the prediction of an individual model does not provide any information regarding the
prediction confidence.

1. Introduction

In the petroleum industry, the need to hydraulically transport solid
particles is encountered frequently. For instance, hydraulic fracturing
involves injecting fluid [typically water, oil, acids, methanol (Pangilinan
et al., 2016), or water mixed with drag-reducing polymer (Gu and
Mohanty, 2015)] and proppants [typically sand, ceramic, or resin-
coated ceramic or sand (Pangilinan et al., 2016)] at high rate and
pressure (Shiozawa and McClure, 2016). This process creates fractures
in the “geologic formations” (Pangilinan et al., 2016), which increases
the permeability and the production rate of the oil reservoir (Zheng
et al., 2015). In another application, during well drilling, the cuttings
need to be transported by the drilling fluid (Akhshik et al., 2015) to
prevent the formation of a stationary bed of solids at the bottom of the
wellbore (Rodriguez Corredor et al., 2016). Consequences of having a
stationary bed of solids include “slow drilling rate, and in severe cases,
stuck pipe” (Rodriguez Corredor et al., 2016).

In these cases, the fluid velocity must exceed the threshold velocity

to successfully transport the solid particles in the pipe. Many solids
transport models exist that predict such velocity (Soepyan, 2015).
Furthermore, different threshold velocity definitions exist (Soepyan
et al., 2014), including the critical velocity (the fluid velocity that marks
the boundary between the settling of solid particles at the bottom of the
pipe and the particles’ full suspension) (Oroskar and Turian, 1980),
saltation velocity (the minimum fluid velocity needed to prevent
suspended solid particles from settling to the bottom of the pipe)
(Zenz, 1964), equilibrium velocity (the fluid velocity where the rate at
which the particles are transported by the fluid equals the rate at which
the particles settle to the bottom of the pipe) (Gruesbeck et al., 1979),
pick-up velocity (the fluid velocity required to initiate the motion of a
solid particle initially at rest on a bed of solids) (Hayden et al., 2003),
and incipient motion velocity (the fluid velocity required to initiate the
motion of a solid particle initially at rest at the bottom of the pipe)
(Rabinovich and Kalman, 2009a).

Different models may be developed using different assumptions
regarding the dominant forces for solid particle transport, given the
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Nomenclature

C particle volumetric concentration
Ci particle volumetric concentration of datum point i
C0 particle volumetric concentration of the input condition
di weighted Euclidean distance between experimental datum

point i and the input condition
D hydraulic diameter of the conduit
Di hydraulic diameter of the conduit of datum point i
D0 hydraulic diameter of the conduit of the input condition
dp particle diameter
dp,i particle diameter of datum point i
dp,0 particle diameter of the input condition
EMA,j mean absolute error of model j
EMAP,j mean absolute error percentage of model j
EMS,j mean squared error of model j
EP,i,j error percentage of model j at experimental datum point i in

the reduced database
ESS,j error sum of squares of the threshold velocity predictions of

model j
F v( )calc distribution function of the predicted threshold velocity in

the reduced database
F v( )exp distribution function of the experimentally-observed

threshold velocity in the reduced database
f x k( , )l equation of the model
⎛
⎝⎜

⎞
⎠⎟f x k,l i j, equation of model j at datum point i

Ha alternative hypothesis
hl correlation between independent variable l and the thresh-

old velocity
H0 null hypothesis
i index of the experimental data points
j index of the models
J number of ranked models
k vector that consists of the parameters (constants) of the

model
kj number of parameters in model j
kj vector that consists of the parameters of model j

kj,non number of parameters in model j that become non-zero
after the model parameter fine-tuning process

l index of the independent variables
max%,j maximum between over%,j and under%,j
mj slope between the predictions of model j and the experi-

mentally-observed values of the threshold velocity
m0,j slope between the predictions of model j and the experi-

mentally-observed values of the threshold velocity, with the
intercept forced to be at the origin

NAr Archimedes number
NAr,i Archimedes number of datum point i
NAr,0 Archimedes number of the input condition
ndata number of data points in the reduced database
Ndata number of data points in the experimental database
nindep,j number of independent variables incorporated in model j
Nmodel total number of models available in the model database
NRe,p particle Reynolds number
NRe,p,i particle Reynolds number of datum point i
NRe,p,i,j particle Reynolds number predicted by model j for datum

point i
ntrial total number of trials (replications) for the Monte Carlo

simulation method
Nvar total number of independent variables that describe the

physical system
over%,j percentage of experimentally-observed threshold velocity

overestimated by model j in the reduced database
P%,j percentage of threshold velocity predictions produced by

model j that lie outside ε ε±(100%) × min(1 − , − 1)l u of the
experimental observations
Rj

2 R2 statistic of model j

R2
adj,dev,j deviation of the modified adjusted-R2 statistic of model j

from the value of one
R2
adj,j adjusted-R2 statistic of model j

R2
adj,mod,j modified adjusted-R2 statistic of model j

Sj score of model j
t index of the trial (replication) of the Monte Carlo simulation

method
TSS total sum of squares of the experimentally-observed thresh-

old velocity
TSS,mod modified total sum of squares of the experimentally-ob-

served threshold velocity
T1 test statistic for the null hypothesis
Uexp,i uncertainty of the experimentally-observed threshold velo-

city at datum point i
under%,j percentage of experimentally-observed threshold velocity

underestimated by model j in the reduced database
Uxl

uncertainty of independent variable l

Uxl i,
uncertainty of independent variable l at datum point i

v threshold velocity
vcalc,i,j threshold velocity predicted by model j for experimental

datum point i
vexp experimentally-observed threshold velocity
vexp,avg average value of the experimentally-observed threshold

velocity in the reduced database
vexp,i experimentally-observed threshold velocity of datum point i
vL,exp,i lower bound of the value of the threshold velocity at

experimental datum point i
vM,i,j estimated “true” value of the threshold velocity at the input

condition given the error of model j at experimental datum
point i

vU,exp,i upper bound of the value of the threshold velocity at
experimental datum point i

v0,avg average value of the threshold velocity predictions of all the
ranked models for the input condition

v0,dev,j absolute deviation of v0,j from v0,avg
v0,i threshold velocity prediction of the model for the ith input

condition
v0,j threshold velocity prediction of model j for the input

condition
x independent variable
xl value of independent variable l
xl vector that contains the values of the independent variables

xl,i value of independent variable l at datum point i
xl i, vector that contains the independent variables of datum

point i
xl i, normalized xl,i
xL,l,i lower bound of the value of independent variable l at

experimental datum point i
xl,0 value of independent variable l at the input condition
xl,0 normalized xl,0
xU,l,i upper bound of the value of independent variable l at

experimental datum point i
x1 first independent variable
x2 second independent variable
yj statistic of model j
z dependent variable
αS level of significance
εl acceptable lower bound of the ratio of the model's predic-

tion to the value of the threshold velocity observed experi-
mentally

εu acceptable upper bound of the ratio of the model's predic-
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