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A B S T R A C T

A group of optimisers, widely used for well placement problems, are population-based algorithms. These
algorithms have a major downside; they are computationally demanding. Online metamodelling is a CPU-time
reduction technique in which the exact fitness function (EF) is substituted, partially, with an approximation
function (AF), often known as proxy or surrogate. Particular attention should be paid to this replacement, as it
may cause convergence to an arbitrary optimum solution. A successful model management strategy can prevent
the possible misdirections, by applying the EF effectively, during the optimisation process. Designing such a
strategy is an active area of research in different disciplines. The main motivation behind this study was to
develop a self-adaptive model management strategy for surrogate-assisted algorithms in such a way that the
same quality results, as those obtained by the corresponding unassisted (typical) algorithm, are delivered with
less computation.

In the proposed model management strategy, two surrogates are utilised. The first surrogate approximates
the fitness function landscape, and the second one estimates the fidelity (accuracy) of the first surrogate over the
search space. According to the estimated fidelity, the probability of using the EF is calculated for each
individual, and then the algorithm stochastically decides to use the EF or AF. A heuristic fuzzy rule defines the
range of probabilities in each evolution-cycle, based on the average fidelity of the second surrogate. The strategy
was implemented on a genetic algorithm, with two neural networks, as the surrogates. The robustness of the
proposed online-learning algorithm was analysed using a benchmarking analytical function and a semi-
synthetic reservoir model, PUNQ-S3. The outcomes were compared with the results achieved by three
algorithms, an unassisted algorithm, an offline-learning surrogate-assisted algorithm, and an online-learning
surrogate-assisted algorithm with a random selection model management strategy. The comparison showed
that the online-learning algorithm with the proposed strategy can outperform the other algorithms.

1. Introduction

The locations of wells (producers and injectors) in a reservoir have
significant impacts on hydrocarbon recovery factor and accordingly the
revenue from the asset. Therefore, finding an optimal scenario for the
placement of the wells is a crucial task. In order to optimise well
placement, several elements should be taken into consideration, such
as hydrocarbon-in-place, reservoir connectivity, fluid and petrophysical
properties, operational/drilling costs and constrains, etc.
(Bouzarkouna et al., 2012). Reservoir simulation is a tool applied to
obtain insights about the reservoir response in respect to development
strategies. Thus, using a reservoir simulator, it is possible to assess the
efficiency of different plans and perform a sensitivity analysis.

In order to find an optimal well placement scenario, the following
procedure, typically, is used (Beckner and Song, 1995). First, the
decision variables (DVs) are defined. These are the parameter sought to

be optimised, for instance wells’ location and trajectory. This step
defines the search space. Second, constraints are implemented which
creates a feasible region in the search space. The solution candidates
(scenarios) are the members of this subspace (solution-space). Third,
an objective (fitness) function is formulated to measure the goodness of
the solution candidates and differentiate them. Net Present Value
(NPV) is usually applied, as the objective function (Beckner and Song,
1995; Guyaguler and Horne, 2001). Finally, an optimisation algorithm
is used to search the feasible space to find the best solution.

In order to evaluate the fitness of each solution candidate, a
reservoir simulation should be executed. Due to the computational
intensity of the numerical simulation, the nonlinearity of the fitness
function and potential high-dimensionality of the search space, a
robust optimisation algorithm is required to find the maximum of
the objective function with the minimum CPU-time. Thus far, several
algorithms have been applied. Zandvliet et al. (2008), Wang et al.
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(2007), Forouzanfar et al. (2010) and Zhang et al. (2010) proposed the
use of adjoint-based algorithms. This type of algorithms can offer a
significant CPU-time reduction in comparison with heuristic, meta-
heuristic and stochastic algorithms. But, they may get stuck in a local
minimum (Onwunalu and Durlofsky, 2010). In stochastic algorithms,
the search space is visited randomly to escape from the local minima.
This procedure is the basis for many stochastic optimisers, such as
Simulated Annealing (SA) (Beckner and Song, 1995) and Simultaneous
Perturbation Stochastic Approximation (SPSA) (Bangerth et al., 2006).
Bangerth et al. (2006) compared SPSA with SA, and it was observed
that SPSA is more computationally efficient. Onwunalu and Durlofsky
(2010) pointed out two drawbacks of SPSA, finding a proper step size
and the gradient-based nature, and as an alternative, employed a
population-based algorithm.

In population-based algorithms, instead of modifying a single
solution candidate, a set of candidates, known as population, is being
modified in each iteration, known as generation. With the recent
advances in computer hardware, these algorithms are becoming more
attractive, due to the fact that most of them can be implemented on
clusters. Genetic Algorithm (GA) has a relatively long history in
production optimisation and history-matching problems. The following
are some of the studies in which a GA was applied for (Montes et al.,
2001; Bittencourt and Horne, 1997; Salmachi et al., 2013; Emerick
et al., 2009; Mamghaderi et al., 2013; Sayyafzadeh et al., 2012;
Sayyafzadeh and Keshavarz, 2016). The other population-based algo-
rithms used for well placement optimisation problem are covariance
matrix adaptation evolutionary strategy (Bouzarkouna et al., 2012),
particle swarm (Onwunalu and Durlofsky, 2010; Siavashi et al., 2016)
and differential evolution (Nwankwor et al., 2013).

Although the population-based algorithms may outperform the
others, they have a major downside. These algorithms are computa-
tionally expensive (Filho and Gomide, 2006), as they require many
fitness function calls during the optimisation process. Reduced-order
modelling is a technique for the reduction of flow simulation time and
was applied for well control optimisation problems (He and Durlofsky,
2014; Jansen and Durlofsky, 2016; Cardoso et al., 2009). But, in this
study, the aim is to reduce the number of (full-order) simulations,
using mathematical surrogates.

Surrogate-assisted algorithms are widespread techniques, for CPU-
time reduction, in which the exact fitness function (EF) is partially (if
online-learning) or completely (if offline-learning) substituted by an
approximation function (AF), often called surrogate, metamodel or
proxy. A surrogate is trained (tuned) by a set of samples taken from the
original fitness function landscape. The following papers are examples
in which a surrogate-assisted evolutionary algorithm was used for
production and/or well placement optimisation (Zubarev, 2009; Tupac

et al., 2007; Guyaguler et al., 2000). Most of the applied surrogate-
assisted algorithms in Petroleum discipline literature used an offline-
learning scheme in which i. An experimental design method is utilised
to define the sample sites, and then, ii. By computing the fitness value
over the sites with the reservoir simulator, the sample set is generated
and used for training a surrogate, and finally, iii. The surrogate is solely
used to estimate the fitness of every proposed individual throughout
the optimisation process. Zubarev (2009) mentioned that such a
practice may misdirect the optimisation to an arbitrary optimum;
especially for problems with complexity (Bouzarkouna et al., 2012).
This is in line with other disciplines’ literature (Razavi et al., 2012; Jin,
2005, 2011).

Surrogates might not have the capabilities to approximate the
global optimum, but, they can provide an overview of the entire fitness
function landscape and good estimation around the sampled regions,
Fig. 1. It has become a normal practice, particularly in other dis-
ciplines, to apply the AF in conjunction with the EF for the fitness
evaluation, known as online-learning (Razavi et al., 2012; Jin, 2011).
To use the EF effectively and efficiently through the optimisation
process, a model management (evolution-control) strategy should be
used. Thus far, various strategies have been introduced (Jin, 2005,
2011; Jin et al., 2001). In an online-learning scheme, to evaluate each
of the proposed individual in every population, the algorithm decides,
based on the implemented model management strategy, to choose
between the two measures (EF and AF), and meanwhile the AF is
retrained (sequentially when a few more individuals evaluated by the
EF are added to the sample pool). Some of the common model
management strategies are reviewed in the next section, and the pros
and cons of them are discussed. In the following studies, a similar
concept was used for well placement optimisation problems.
Bouzarkouna et al. (2012) utilised a metamodel as a local search tool
in a CMA-ES algorithm and observed a fair CPU-time reduction. In
their algorithm, the full capacity of the surrogate may not be used, since
the global search is conducted mainly by EF measurements. Guyaguler
et al. (2000) used a hybrid genetic algorithm (polytope) with proxies. In
their algorithm, the search (new population generation) is conducted,
based on AF measurements, and only the best-ever solution is re-
evaluated by the EF. Yeten et al. (2002) used an artificial neural
network as the proxy. In their algorithm, the criterion for selecting the
individual (to be re-evaluated by EF) is based on the fitness value
measured by the AF, and hence the search is conducted mostly by the
AF. In the last two techniques, a pre-mature convergence may occur
(Jin, 2005), e.g., in Fig. 1, the true solution is in right hand side, while
the AF estimates a low fitness value for that region, in such a case, the
EF does not get the chance to evaluate any individual in this region and
those sections remain un-sampled. Researchers suggested to use a

Nomenclature

a Minimum probability
b, b′ ANN's parameter
CF Cash flow
DR Discount rate
dcal Simulation data required for NPV calculation
f(M,x) Exact fitness function
f b w v xˆ ( , , , ) Approximation fitness function
H Evolution-control size
h(t) Activation function
L1 & L2 Normalising value
M Simulation-model
N Number of samples or the number of EF-calls
Nx The dimension of X
Ny The dimension of Y
P,Q,R The number of neurons

p2 Probability calculated based on the average accuracy of
the second surrogate

pi Probability of selecting EF for individual xi
q Production rates
Ri Normalised approximated relative difference
T Years of production for calculation of NPV
u x(⎯→) Average relative difference
v ANN's structure
w ANN's parameter
X Search-space
xi An element of x⎯→

x⎯→ An individual (a vector in X)
Y Fitness space
yi Exact fitness value corresponds to xi (a vector in Y)
Z(xi) Relative difference for individual xi
Z b w v xˆ( ′, ′, ′, )i Approximated Relative difference for individual xi
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