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A B S T R A C T

Categorical variable modeling is of great significance for resource estimation as it defines a major aspect of
geological heterogeneity and uncertainty. Stochastic simulation can be used to generate multiple equally-
probable realizations that describe the uncertainty in the spatial distribution of categorical variables such as
facies. These realizations reasonably sample the space of uncertainty if the input statistics are well known.
However, the input statistics are often poorly defined due to sparse data. The prior parameter uncertainty
related to proportions of different categories is required to achieve an accurate evaluation of the space of
uncertainty. For decision making and risk analysis, it is critical to have an accurate and precise model of
uncertainty associated with 3924 the subsurface geology. A methodology is proposed, implemented and checked
to quantify parameter uncertainty related to facies proportions in presence of a locally varying proportion model
(a trend model). Unconditional sequential indicator simulation (SIS) is employed to implement the spatial
bootstrap and quantify the prior proportion uncertainty. A trend building algorithm provides multiple
realizations of the trend model based on the spatial bootstrap realizations of sampled data. Passing this prior
parameter uncertainty through geostatistical simulation provides a realistic posterior model of uncertainty that
accounts for the data configuration, conditioning, spatial correlation, and the domain limits.

1. Introduction

An accurate assessment of geological uncertainty plays a key role in
resource estimation and risk management (Hanea et al., 2015;
Bratvold and Begg et al., 2006). The spatial distribution of facies
defines the stationary domains for continuous properties such as
porosity and permeability and explains a major aspect of spatial
heterogeneity and geological uncertainty (Pyrcz and Deutsch, 2014;
Falivene et al., 2006). The ensemble of facies and property realizations
can quantify a realistic space of uncertainty if the input statistical
parameters are well known. However, limited well data does not permit
unambiguous specification of the required parameters (Dowd and
Pardo-Igúzquiza, 2002; Babak and Deutsch, 2009). Thus, the uncer-
tainty represented by geostatistical realizations based on the same
underlying statistical and geological parameters is too small (Khan and
Deutsch, 2015; Wang and Wall, 2003). The uncertainty associated with
the input statistical parameters is referred to as parameter uncertainty
and must be integrated into the geostatistical modeling to obtain an
accurate model of uncertainty. There is a significant body of literature
on accounting for parameter uncertainty in geomodeling (Babak and
Deutsch, 2009; Kitanidis, 1986; Christakos and Li, 1998; Wang and
Wall, 2003). This paper is focused on developing a practical and

effective methodology for integration of proportion uncertainty into
geostatistical simulation of categorical variables. Khan and Deutsch
(2015) proposed a two-step methodology for integration of parameter
uncertainty in geostatistical modeling of continuous variables. The first
step is based on quantifying the prior parameter uncertainty in input
statistics using the spatial bootstrap (Solow, 1985). This technique
accounts for the configuration and the spatial correlation between
sampled data. The second step transfers the prior parameter uncer-
tainty through the geostatistical modeling process that narrows the
uncertainty by considering the effect of conditioning data and account-
ing for the finite domain limits. In this paper, this methodology is
implemented to quantify the proportion uncertainty for facies in
presence of trends. A trend is a locally varying model of facies
proportions that is inferred based on available data and characterizes
the local geological framework (Babak et al., 2014). Categorical
variables are often modeled with a trend and the uncertainty of
proportions is of great significance for resource estimation. A geosta-
tistical work flow is presented here to obtain an accurate estimation of
uncertainty in proportions of categorical variables. The proposed work
flow is checked by an experimental setup and its implementation is
studied through a case study using a synthetic data set generated based
on real well data.
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The spatial bootstrap for categorical variables is implemented using
unconditional sequential indicator simulation (SIS) at data locations.
SIS is a well-established stochastic technique for categorical variable
modeling (Journel and Isaaks, 1984; Journel, 1983; Journel and
Alabert, 1989). There are some concerns about indicator simulation.
The indicator variograms only consider two-point statistical measures
and there is no explicit control over the cross correlation between the
simulated categories (Deutsch, 2006). However, there are some good
features of SIS that makes it a reasonable technique for the spatial
bootstrap. For one thing, the required modeling parameters can be
easily inferred from limited well data. Indicator kriging is a robust
algorithm to quantify local conditional probabilities and the sequential
simulation provides a straightforward way to transfer uncertainty in
spatial distribution of categorical variables (Deutsch, 2006). The prior
proportion uncertainty is quantified by unconditional SIS and repre-
sented by multiple realizations of the trend model that can be
integrated in different facies modeling technique including truncated
Gaussian (TG), truncated pluri-Gaussian (TPG), multiple point statis-
tics (MPS) and object based algorithms (Matheron et al., ; Armstrong
et al., 2003; Strebelle, 2002; Deutsch and Wang, 1996).

2. Methodology

Integrating parameter uncertainty related to input statistical para-
meters is necessary to obtain a realistic model of geological uncertainty.
Fixing input parameters and running multiple geostatistical realiza-
tions leads to an unrealistically low uncertainty in global resources or
resources over larger volumes of interest for production. For facies
modeling, the proportions are the main input statistical parameter.
Thus, parameter uncertainty associated with facies proportions is
referred to as proportion uncertainty. Facies proportions often follow
a trend that is inferred based on available data and reveals the
characteristics of the local geological framework. In order to quantify
the prior uncertainty in proportions of facies based on limited sampled
data, statistical resampling or the spatial bootstrap is employed. This is
done by unconditional sequential indicator simulation at the data
locations where the base-case trend model is considered in the
simulation process. In this context, a trend building algorithm is used
to generate the base-case trend based on available facies data. The
trend building algorithm is also used to generate realizations of the
trend model based on the spatial bootstrap realizations of facies. The
prior uncertainty in facies proportion is then represented by multiple
realizations of the trend model that account for the configuration and
the spatial correlation of the data. Integrating this prior parameter
uncertainty into the geostatistical modeling work flow narrows it by
considering the effect of the conditioning data and accounting for the
finite domain limits. In this context, each realization of the trend model
is used as the input statistics for geostatistical modeling and generating
the corresponding spatial distribution of facies within the domain of
interest. This results in a realistic posterior uncertainty that accounts
for parameter uncertainty associated with facies proportions. The
proposed methodology was checked to assure that the modeled poster-
ior uncertainty is realistic. Fig. 1 shows a flow chart that summarizes
the workflow of the proposed methodology.

2.1. Unconditional indicator simulation at data locations

The spatial bootstrap sampling is implemented by unconditional
indicator simulation. This provides the ability of considering large data
sets with high resolution sampling down wells. Consider a regionalized,
random categorical variable Z u( ) at location u within a stationary
domain A and with K different categories or facies. The categories are
mutually exclusive meaning that at each location only one category
exists. Also, one of the categories must exist at all locations. In this
context, categorical variables can be expressed as a series of indicator
variables:

I k Z k k K Au u u( , ) = 1, if ( ) =
0, otherwise

, = 1,…, , ∀ ∈
⎧⎨⎩ (1)

An indicator variable can be interpreted as the binary probability of
a category to prevail at a particular location: the probability is 1 if it
prevails and 0 if it does not (Deutsch, 2006). Indicator variography is
used to quantify the transition probability for each category as a
function of vector Euclidean distance. This quantifies the spatial
continuity for each of the K indicator variables. The indicator vario-
gram is calculated, interpreted and modeled to represent the two-point
statistical spatial variability and is expressed as:

γ k E I k I k k Kh u h u( ; ) = 1
2

{[ ( + ; ) − ( ; )] }, = 1,…,I
2

(2)

where E {} is the expected value or probability weighted average and h
is the distance vector between the two points. Indicator kriging is used
to estimate the local distribution of uncertainty conditioned to local
indicator data. In presence of n nearby local data, the kriging estimator
is written:

∑I k P k λ k I k P k k Ku u u u u*( ; ) − ( ; ) = ( ; )[ ( ; ) − ( ; )], = 1,…,
α

n

α α α
=1

(3)

where P(u;k) is the prior model of local proportions provided by the
trend model that is inferred based on local data and represents the
subsurface geological formation. The kriging weights are assigned to
minimize the error variance providing the following system of linear
equations:

∑ λ k C k C k α n k Ku u u u u( ; ) ( , ; ) = ( , ; ), = 1,…, & = 1,…,
β

n

β α β α
=1

(4)

C k C k γ kh h( ; ) = (0, ) − ( ; )I

where C(h;k) is the covariance function calculated based on the
corresponding indicator variogram (Journel, 1983). In this context,
C k(0, ) denotes the indicator variance. The estimator of indicator
kriging for each category provides the local conditional probability/
proportion at an unsampled location that can be integrated to infer a
conditional cumulative distribution function (CCDF). These estimated
probabilities are post processed to ensure they are within 0–1 and that
they sum to 1. Indicator simulation is then implemented by Monte
Carlo sampling of the CCDF. Fig. 2 summarizes how a CCDF is formed
and used for simulation based on Monte Carlo sampling.

For the spatial bootstrap, all the data locations are considered as
unsampled locations and simulated in a random sequence. In this
context, the simulation is implemented by inferring the CCDF based on

Fig. 1. A flow chart to explain the proposed methodology for quantification and
integration of proportion uncertainty.
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