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a b s t r a c t

Successful identification of the fractures in fractured reservoirs is important to guarantee an effective
development. Considering that the production performance of fractured reservoirs contains important
information of the distribution of fractures, the production performance can be applied for the inversion
of fractures. However, the inversion of fractures is difficult to achieve because it is an inverse problem
with an inherent defect of multiplicity of solutions. In order to alleviate the defect, we estimate the
possible distribution ranges of fractures which can be obtained by analyzing the correlation of fractures
and in-situ stress, and the ranges are used as constraint conditions when the production performance is
applied for obtaining the accurate distribution of fractures. Firstly, we choose the geometric parameters
of fractures such as midpoint coordinate, azimuth and extension length of fractures as inversion pa-
rameters and use production data as inversion indexes. Secondly, we simulate the flow behavior in
fractured reservoirs based on the Discrete Fracture Matrix (DFM) module of Matlab Reservoir Simulation
Toolbox (MRST) to explicitly describe the effect of fractures on the flow behavior of fluid. Thirdly, the
possible distribution ranges of fractures which can be obtained by analyzing the correlation between
fractures and in-situ stress based on Griffith failure criterion are used as the constraint conditions of
inversion parameters. Finally, Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm is
adopted to minimize the inversion objective function to obtain the accurate distribution of fractures.
Theoretical cases verify that the method is effective for the accurate inversion of fractures while the
inversion results of more fractures become worse because more fractures make the sensitivities of
production performance to individual fractures decrease greatly.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The flow behavior and mechanism in fractured reservoirs are
much complicated because of the existence of fractures. In order to
effectively develop oil and gas in fractured reservoirs, it is necessary
to realize the accurate identification of fractures. Conventional
identification techniques which are used to identify or predict
natural fractures, such as core analysis, outcrop data, logging and
seismic exploration, are inappropriate to obtain the accurate dis-
tribution of fractures because of ignoring the effect of fractures on
the flow behavior. Therefore, the production performance of frac-
tured reservoirs which includes the flow information determined

by both matrix and fractures is a crucial information for the
inversion of fractures (Gang and Kelkar, 2006; Suzuki et al., 2005).
In order to directly connect the distribution of fractures with the
dynamic flow behavior, the midpoint coordinateðx0; y0Þ, azimuth a

and extension length L of fractures are chosen as inversion pa-
rameters instead of conventional petro-physical parameters such as
permeability or porosity. When it comes to the mathematical flow
models of simulating the flow behavior in fractured reservoirs,
there are two main flow models: dual medium model and discrete
fracture model. Dual medium model was proposed by Barenblatt
et al. and has been widely used (Zheltov et al., 1960; Lim and Aziz,
1995). However, the simulation results of the dual medium model
for the fractured reservoirs in which the fractures are poorly
developmental, especially when there are several large-scale frac-
tures dominating the flow behavior, are much different with the
actual flow behavior. Therefore, in order to more accurately simu-
late the effect of individual fractures on the flow behavior in
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fractured reservoirs, Noorishad et al. proposed discrete fracture
model, in which the realistic geometry of fractures is represented
explicitly (Noorishad, 1982; Hægland et al., 2009; Jiang and Younis,
2015; Mia et al., 2014). DFMmodel has the advantage of simulating
the fractured reservoirs in which a small number of fractures
dominate the reservoirs. In 2012, Sandve et al. developed the
Discrete Fracture Matrix (DFM) module based on an open-source
Matlab Reservoir Simulation Toolbox (MRST) and used the multi-
point flux approximation (MPFA) Finite Volume method to
handle unstructured grids to calculate numerical simulation values
(Lie et al., 2012; Sandve et al., 2012). The numerical simulation of all
the fractured reservoirs involved in the paper is calculated by the
DFM module of MRST.

Essentially, applying the production information for the inver-
sion of fractures is an inverse problem: on the basis of Bayesian
theory, the inversion objective function which represents the dif-
ference between the real production of fields and the numerical
simulation is established; then an effective optimization algorithm
is used to minimize the difference to obtain the optimal distribu-
tion of fractures which is consistent with the real distribution of
fractures in fractured reservoirs (Zhao et al., 2013). However, the
inversion of fractures has an inherent defect of multiplicity of so-
lutions, which makes it much difficult to get the optimal distribu-
tion of fractures. Therefore, effectively alleviating themultiplicity of
solutions is a crucial step to achieve the successful inversion of
fractures. Considering that fractures are the products of in-situ
stress, the possible distribution ranges of fractures can be esti-
mated by studying the correlation between fractures and in-situ
stress based on rock failure criteria such as Griffith failure crite-
rion (Zhang, 2008; Zongzhen et al., 2010). Then the estimated
ranges can be used as the constraint conditions of inversion pa-
rameters to mitigate the multiplicity of solutions. Generally, the
optimization algorithms which are applied for the inversion pro-
cess involve gradient and non-gradient methods. The gradient
methods include Gauss-Newtonmethod, Adjoint method and so on
(Kalogerakis and Tomas, 1995; Wu et al., 1999; Rodrigues et al.,
2006). However, the complicity of calculating high-dimensional
Jocabian Matrix limits the application of gradient methods for the
inversion problems in large-scale reservoirs. In order to overcome
the defect, some non-gradient methods have been used, such as
Genetic Algorithm, Evolutionary Algorithm, Particle Swarm Opti-
mization, EnKF and SPSA, etc. (Sen et al., 1995; Abdelkhalik et al.,
2012; Mohamed et al., 2011; Gu and Oliver, 2006; Gao et al.,
2004a). Although there is no need to calculate gradients when
using non-gradient methods, there are other disadvantages: when
genetic algorithm is used to minimize objective function, the

optimal results are obtained at the expense of thousands of simu-
lation operations; EnKF is unavailable for the inversion problems
when the flow behavior in reservoirs is highly nonlinear. In order to
make the inversion process easily achieved and guarantee the high
efficiency of operation, SPSA algorithm (Simultaneous Perturbation
Stochastic Approximation) is adopted to minimize the inversion
objective function. In 2004, Gao et al. introduced SPSA algorithm to
solve the optimization problems in reservoirs (Gao et al., 2004b).
The advantages of SPSA are that it can guarantee the calculated

gradient to be invariably descent direction in terms ofminimization
problems and it can be easily combined with numerical simulators.
Besides, in order to guarantee the search results to be in accord
with the conditions of reservoirs, the covariancematrix of inversion
parameters is added to the standard SPSA to improve the stability of
it (Zhang et al., 2015).

2. Establishment of inversion objective function

In order to achieve the inversion of fractures successfully, it is
necessary to establish a proper inversion objective function which
can reflect the difference between the production performance and
the numerical simulation.

2.1. Bayesian inverse objective function

Reservoir parameters are usually considered to be random var-
iables conforming to the multivariate Gaussian distribution, and
there is a probabilistic relationship between reservoir parameters
and production performance of fields (Tarantola, 2005). On the
basis of Bayesian theory, when production datadobs is given, the
conditional probability distribution function of reservoir parame-
ters m is given by:

f ðmjdobsÞff ðdobsjmÞf ðmÞ (1)

The probability distribution function of reservoir parameters m
is defined as:
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Where m is a vector of Nm dimension with mean value as mpr and
covariance matrix as CM; mpr is the prior estimate of the reservoir
parameters.

When reservoir parameters m is given, the conditional proba-
bility distribution function of production data is given by:
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Where dods is a vector of Nd dimension, containing the production
data such as oil production rate andwater production rate; CD is the
covariance of the production data. gð,Þ represents the numerical
simulation results of a reservoir simulator.

Therefore, when production data dobs is given, the probability
distribution function of reservoir parameters m is defined as:

The goal of the inversion is to search for the optimal parameters
m which can make the probability calculated by Eq. (4) maximal.
Eq. (4) can be simplified as:
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