Accepted Manuscript

In situ measurement of physical solubility of carbon dioxide in loaded aqueous monoethanolamine by Raman spectroscopy

M.K. Wong, M.A. Bustam, A.M. Shariff

PII: \$1875-5100(16)30767-3

DOI: 10.1016/j.jngse.2016.10.029

Reference: JNGSE 1875

To appear in: Journal of Natural Gas Science and Engineering


Received Date: 4 April 2016

Revised Date: 20 September 2016

Accepted Date: 20 October 2016

Please cite this article as: Wong, M.K., Bustam, M.A., Shariff, A.M., In situ measurement of physical solubility of carbon dioxide in loaded aqueous monoethanolamine by Raman spectroscopy, *Journal of Natural Gas Science & Engineering* (2016), doi: 10.1016/j.jngse.2016.10.029.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

In Situ Measurement of Physical Solubility of Carbon Dioxide in Loaded Aqueous Monoethanolamine by Raman Spectroscopy

M.K. Wong^a, M. A. Bustam^a, A. M. Shariff^{a,b}
^aResearch Centre for CO₂ Capture (RCCO₂C),
UniversitiTeknologi PETRONAS
31750 Tronoh, Perak, Malaysia

^bCorresponding author. Tel: +605 3687570; Fax: +605 3656176;

Email address: azmish@petronas.com.my

Abstract—Physical solubility is a physicochemical parameter necessary for reaction kinetic study and modeling CO₂ separation process. When CO₂ absorb into liquid phase and react with solvent, shift in chemical composition and equilibrium results in change in properties of solvent. As CO₂ absorption is a continuous process with CO₂ dissolving into partially loaded solution most of the time, availability of a robust technique to access unreacted CO₂dissolved in aqueous phase is crucial to study effect of CO₂ loading on physical solubility. Current work investigates physical solubility of CO₂ in loaded monoethanolamine (MEA) solution at elevated pressure conditions by direct measurement of unreacted CO₂ dissolved in the solution using Raman spectroscopy. This spectroscopic method does not require N₂O as surrogate gas, hence eliminates the need of N₂O analogy to estimate solubility of CO₂. Impact of varying CO₂ loadings on Henry's constant is examined.

Keywords—CO₂ absorption; CO₂ loading; equilibrium; Henry's constant; MEA;

1. Introduction

CO₂ capture from gas stream is one of the most crucial strategies to reduce greenhouse gas emission from various industries and combat global climate change due to increasing atmospheric CO₂ concentration. Besides, CO₂ separation, also known as gas sweetening, is necessary in natural gas industry to comply with consumers' requirement. In addition, acid gas purification increases calorific value of natural gas, improves pipeline capacity as well as reduces risk of corrosion in pipeline and process equipment. Technologies for CO₂ removal include absorption, adsorption, membrane separation and cryogenic process. Separation by aqueous alkanolamine is broadly applied in large scale acid gas treatment. Monoethanolamine (MEA) is the

Download English Version:

https://daneshyari.com/en/article/5484826

Download Persian Version:

https://daneshyari.com/article/5484826

<u>Daneshyari.com</u>