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a b s t r a c t

Modeling natural gas transportation networks poses a number of challenges due to the significant non-
linearities associated to the governing equations. Pressure (nodal or p-) formulations and flow (nodal-
loop or q-) formulations are the most commonly deployed approaches used to formulate gas flow
network models. They treat nodal pressures and pipe branch flow rates as primary unknowns, respec-
tively, and the Newton-Raphson method is the typical choice used to solve the resulting system of pipe
network equations. The major disadvantage of Newton-Raphson methods is their tendency to hopelessly
diverge when good initializations for the unknown pressure and flow variables are not available. In order
to overcome this drawback, a linear-pressure analog approach, applicable to the p-formulation, was
recently proposed to formulate an initial-guess-free solution protocol. However, solving the q-formu-
lation rather than the p-formulation would be an alternate, practical, and desirable way to study gas flow
in pipeline networks because the system of equations is predominantly lineardwith the exception of the
loop equations. Linear Theory and Hardy Cross methods have been used in the past solve such q-
formulation. Unfortunately, these methods are not initial-guess-free and have been shown to become
potentially unstable and thus inefficient because their convergence is also strongly associated with the
availability of good initial guesses. This work proposes a linear-rate analog method capable of effectively
solving the q-formulation. Through case studies, the proposed linear-rate analog method is shown to be a
robust and initial-guess-free solution scheme to effectively model horizontal and inclined natural gas
pipeline networks.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Reliable modeling of natural gas transportation networks con-
tinues to increase in importance as a result of increased energy
demands and production from large unconventional gas fields (EIA,
2013; Makogon et al., 2007; Wood et al., 2008). Solving a natural
gas pipeline network system is challenging due to the high
nonlinearity of the governing equations of gas flow in conduits.
Therefore, the development of robust mathematical methods to
model gas flow in pipeline becomes of utmost importance for the
study of optimized design and performance.

Governing equations of gas pipe flow in networks are derived
from energy conservation statements for steady state conditions
(Ayala, 2013). Typically, pipe networks consist of nodes and pipe
branches. External demands and supplies can be present at the

nodes. In these networks, closed circuits formed by pipe branches
are known as pipe loops. The formulation of gas flow network
equations can be categorized as pressure (p-), pipe flow (q-) or
loop-rate correction (Dq-) approaches, where node pressures,
branch flow rates or corrections to flow rates within a loop,
respectively, are treated as primary unknowns (Kelkar, 2008;
Kumar, 1987). Practically, gas network formulations can be
coupled with large spectrum of friction factor calculation means for
various flow regimes (Chen, 1979; Colebrook, 1939; GPSA, 2004;
Menon, 2005; Moody, 1944; Weymouth, 1912). The generalized
Newton-Raphson method is one of the most powerful solution
schemes which can be implemented to solve many types of non-
linear systems of equations. Its significant drawback is its well-
known local (rather than global) convergence behaviordin which
convergence is only guaranteed if the Newton Raphson scheme is
initialized close-enough to the actual solution. This necessitates the
availability of good initial guesses for all unknownsdwhich can
become a daunting task for large and complex systems of equations* Corresponding author.
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and unknowns.
In order to overcome this obstacle, Ayala and Leong (2013)

developed a robust and guess-free linear-pressure analog method
to linearize and solve the system of equations written in terms of
the p-formulation. The authors demonstrated that the linear-
pressure analog is able to reliably converge to a final solution
without the need for any pressure or flow-rate initialization. More
importantly, it was shown that the analog methodology could be
utilized to aid the Newton-Raphson scheme by providing very good
initializations (Ayala and Leong, 2013; Leong and Ayala, 2014).

This study pursues to extend this previous work by presenting a
linear-rate analog capable of effectively solve the q- (rather than the
p-) formulation. The implementation of the q-formulation is prac-
tical and desirable because the resulting system of nodal mass
balance equations are all linear when written in terms of flow
ratedwhich constitute the large majority of network equations
within the q-formulation. Other available alternatives for the so-
lution of equations in terms of the q-formulation are the Hardy
Cross (1930) and Linear Theory (Wood and Charles, 1972) methods.
However, the implementation of the aforementioned solution
techniques also requires the availability of good initial guesses.
Some more recent studies have focused in speeding up the
convergence of the classical methods such as Hardy Cross (e.g.,
Brki�c, 2009) but little attention has been paid into eliminating the
need for pressure or flow initial guesses from these protocols as
presented in this study. In this work, the proposed linear rate
analog linearizes the remaining non-linear loop equation-
sdleading to a matrix system whose coefficients are fully inde-
pendent from flow or pressure initializations. Detailed case studies
are presented to highlight the performance of the proposed
method in solving horizontal inclined network cases. Numerical
performance is compared against other linearization methodolo-
gies. It is shown that the proposed method represents a robust
means to generate stable and fast solutions for the q-formulation
which could be used to provide valuable guidance during gas pipe
network design and optimization.

2. Governing equations in gas network analysis

2.1. p-formulation

In the p-formulation, continuity equations for gas flow in con-
duits are written in terms of nodal pressures which are treated as
primary unknowns. For a horizontal pipeline network, gas network
equations are written at each node i considering all the connecting
j-nodes via pipe branches as shown in Equation (1):

X
j

±Cij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2i � p2j

q
þ Si � Di ¼ 0 (1)

where Cij is the pipe conductivity, and Si and Di are flow sources or
demands at node i, respectively. Flows entering the node are
considered positive and flows leaving the node negative. Pipe
conductivity calculations involves the calculation of the appro-
priate friction factor depending on the gas pipe equation of interest
(see Appendix A). When the p-formulation is applied to a network
of N nodes, only N-1 linearly independent equations can be ob-
tained from Equation (1). Mathematical closure is achieved speci-
fying pressure at one of the ‘N’ nodes in the system.

2.2. q-formulation

This work aims to solve governing equations for natural gas flow
in conduits using the q-formulation. Primary unknowns in this case

are flow rates at each of the pipe branches. The system of equations
consists of a combination of nodal mass balance and loop equa-
tions. Nodal mass balance equations are the same as the ones
presented in Equation (1), but written in terms of pipe flow rates.
For an arbitrary node i, the nodal mass balance equation is
expressed as follows:X
j

±qij þ Si � Di ¼ 0 (2)

where qij's are all the flows entering are leaving node i through pipe
connections with neighboring j-nodes, and Si and Di are the
external supplies and demands at node i, respectively. Flows
entering the node are considered positive and flows leaving the
node negative. Equation (2) is analogous to the first law of Kirchhoff
for conservation of electrical charge in electrical circuits. In a pipe
network of with N nodes, N-1 linear dependent equations can be
generated via Equation (2). If “L” loops can be identified in the
network system, additional loop equations can be established for
each loop via the second law of Kirchhoff. Around every closed loop,
the sum of all pressure drops around the geometrical enclosure
must add up to zero:

Xloop
i;j

±
�
p2i � p2j

�
¼ 0 (3)

In this summation (Equation (3)), pressure drops that result in
flow directions that align with prescribed loop direction are
considered positive, and negative otherwise. According to the
generalized gas pipe equation for the horizontal case (see Appendix
A), one writes:

�
p2i � p2j

�
¼
 
qij
Cij

!2

¼ Rij q
2
ij (4)

where Rij is the pipe resistance (Rij ¼ 1=C2
ij ). Substituting Equation

(4) into Equation (3), loops equations could be alternatively recast
as:

Xloop
ij

±Rij q
2
ij ¼ 0 (5)

It should be reiterated at this point that the resulting system of
equations generated using the q-formulation is mostly linear: “N-1”
equations are already linear in flow rate (nodal mass conservation,
Equation (2)) with additional “L” non-linear equations (loop
equations, Equation (5)) because of the presence of squared flow
(q2ij) terms. In general, N >> L, and the system of equations would be
fully linear if there were no closed loops in the network (L ¼ 0).

3. The linear-pressure analog formulation

Ayala and Leong (2013) developed a linear-pressure analog
scheme that linearized the p-form of the gas network equations.
They showed that the non-linear pressure coefficient in the
generalized gas flow equation (Equation (6)):

qij ¼ Cij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2i � p2j

q
(6)

can be rewritten as Equation (7):

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2i � p2j

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pi þ pj
pi � pj

s �
pi � pj

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

pi
pj
� 1

s
$
�
pi � pj

�
(7)

Q. Sun, L.F. Ayala / Journal of Natural Gas Science and Engineering 43 (2017) 230e241 231



Download English Version:

https://daneshyari.com/en/article/5485117

Download Persian Version:

https://daneshyari.com/article/5485117

Daneshyari.com

https://daneshyari.com/en/article/5485117
https://daneshyari.com/article/5485117
https://daneshyari.com

