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a b s t r a c t

Reflection and transmission of plane waves through a flexoelectric piezoelectric slab sandwiched by two
piezoelectric half-spaces are studied in this paper. The secular equations in the flexoelectric piezoelectric
material are first derived from the general governing equation. Different from the classical piezoelectric
medium, there are five kinds of coupled elastic waves in the piezoelectric material with the microstruc-
ture effects taken into consideration. The state vectors are obtained by the summation of contributions
from all possible partial waves. The state transfer equation of flexoelectric piezoelectric slab is derived
from the motion equation by the reduction of order, and the transfer matrix of flexoelectric piezoelectric
slab is obtained by solving the state transfer equation. By using the continuous conditions at the interface
and the approach of partition matrix, we get the resultant algebraic equations in term of the transfer
matrix from which the reflection and transmission coefficients can be calculated. The amplitude ratios
and further the energy flux ratios of various waves are evaluated numerically. The numerical results
are shown graphically and are validated by the energy conservation law. Based on these numerical
results, the influences of two characteristic lengths of microstructure and the flexoelectric coefficients
on the wave propagation are discussed.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

It is known that the classical elastic theory does not suffice for
an accurate and detailed description of corresponding mechanical
behavior in the range of micro and nano scales. The main cause
is the absence of internal characteristic length, characteristic of
the underlying microstructure, from the constitutive equation in
the classical elastic theory, and therefore the notable size effects
observed experimentally could not be captured. In the problem
of wave propagation, the classical elastic theory is also believed
to be inadequate for a material possessing microstructure, in par-
ticular, when the wavelength of an incident wave is comparable
to the length of the material microstructure. The same, in the clas-
sical piezoelectric elastic theory, no characteristic length is
included in the constitutive relations. Therefore, the classical
piezoelectric elastic theory cannot describe the mechanical and
electrical behaviors of piezoelectric material in the micro or nano
scale and size effects. Recently, Zubko et al. [1] studied the flexo-

electric effect in piezoelectric solids. They discussed the presence
of flexoelectric effect in many nanoscale systems and looked at
its potential applications in the MEMS (micro electro mechanical
system). Hu and Shen [2,3] studied the variational principles and
governing equations in nano-dielectrics with the flexoelectric
effect. By establishing the electric enthalpy variational principle
for nano-sized dielectrics with the strain gradient and the polariza-
tion gradient effects, the governing equations and boundary condi-
tions were given. Shu et al. [4] studied the symmetry of
flexoelectric coefficients in crystalline medium. Their investigation
indicated that the direct flexoelectric coefficients should be pre-
sented in 3� 18 form and the converse flexoelectric coefficients
in 6� 9 form, rather than 6� 6 form. Liang et al. [5] studied the
Bernoulli–Euler dielectric beam model based on the strain-
gradient effect. It was found that the beam deflection predicted
by the strain gradient beam theory is smaller than that by the clas-
sical beam theory when the beam thickness is comparable to the
internal length scale parameters. Zhang et al. [6] demonstrated
an experiment on two designs of flexoelectric metamaterials. It
was found that when a ferroelectric ceramic wafer is placed on a
metal ring or has a domed shape, which is produced through the
diffusion between two pieces of ferroelectric ceramic of different

http://dx.doi.org/10.1016/j.ultras.2017.08.008
0041-624X/� 2017 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: Department of Applied Mechanics, University of
Science and Technology Beijing, Beijing 100083, China.

E-mail address: weipj@ustb.edu.cn (P. Wei).

Ultrasonics 82 (2018) 217–232

Contents lists available at ScienceDirect

Ultrasonics

journal homepage: www.elsevier .com/locate /ul t ras

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ultras.2017.08.008&domain=pdf
http://dx.doi.org/10.1016/j.ultras.2017.08.008
mailto:weipj@ustb.edu.cn
http://dx.doi.org/10.1016/j.ultras.2017.08.008
http://www.sciencedirect.com/science/journal/0041624X
http://www.elsevier.com/locate/ultras


compositions at high temperatures, an apparent piezoelectric
response originating from the flexoelectric effect can be measured
under a stress, and the apparent piezoelectric response of the
materials based on the designs can be sustained well above the
Curie temperature. Liu and Wang [7] investigated the size-
dependent electromechanical properties of piezoelectric superlat-
tices made of BaTiO3 and PbTiO3 layers, it was found that the strain
gradient is giant at the interface between BaTiO3 and PbTiO3 layers,
which will lead to the significant enhancement of polarization in
the superlattice due to the flexoelectric effect, therefore, the influ-
ence of strain gradient at the interface becomes significant when
the size of superlattice decreases. Although the flexoelectric effect
has been studied in the above-mentioned literatures, the influ-
ences of the flexoelectric effect on the wave propagation in piezo-
electric material have not been reported so far.

The reflection and transmission of elastic wave through a slab
with finite thickness was an everlasting interesting topic in the
past decades. Caviglia and Morro [8,9] studied the wave propaga-
tion through an elastic slab and a viscoelastic slab, respectively.
Tolokonnikov [10] studied the wave propagation through an inho-
mogeneous anisotropic slab. Larin and Tolokonnikov [11] further
studied the wave propagation through a non-uniform thermoelas-
tic slab. Hsia and Su [12] studied the wave propagation through a
microporous slab characteristic of micropolar elasticity. Zhang
et al. [13] also studied the wave propagation through a micropolar
slab sandwiched by two elastic half-spaces. The influences of the
micropolar elastic constants and the thickness of slab on the reflec-
tion and transmission waves were discussed in their paper. Li and
Wei [14,15] studied the reflection and transmission of plane waves
at the interface between two different dipolar gradient elastic half-
spaces and the reflection and transmission through a microstruc-
tured slab sandwiched by two half-spaces. It was found that the
microstructure effects make the propagating waves dispersive
and create the evanescent waves that become the surface waves
at the interface. The influences of three characteristic lengths,
namely, the incident wavelength, the thickness of slab and the
characteristic length of microstructure, on the reflection and trans-
mission waves were analyzed. Because the sandwiched structure is
widely met in the transducer, actuator, acoustic isolator, interface
detection and so on, the researches on the wave propagation
through a sandwiched slab are of importance theoretically and
practically.

In this paper, wave propagation through a piezoelectric slab
sandwiched by two piezoelectric half-spaces with the flexoelec-
tric effect taken into consideration is studied. The dispersive
equation is derived from the general motion equation and the
all possible partial waves in the piezoelectric material with the
flexoelectric effect are discussed. The state vectors and the state
transfer equation in the piezoelectric slab are also derived. Non-
traditional interface conditions with the monopolar and dipolar
tractions are considered, and the reflection and transmission
coefficients are obtained in term of the transfer matrix. The
amplitude ratios and further the energy flux ratios of the reflec-
tion and transmission waves are calculated numerically and the
numerical results are validated by the check of energy conserva-
tion. Based on the numerical results, the influences of the flexo-
electric coefficients and two characteristic lengths of
microstructure on the reflection and transmission waves are
discussed.

2. State vectors in the piezoelectric solid with the flexoelectric
effect considered

The general expression of the electric Gibbs free energy density
function can be written as [5]

U ¼ �1
2
eklEkEl þ 1

2
cijklSijSkl � ekijEkSij � f ijklEigjkl þ rijklmSijgklm

þ 1
2
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where ekl and cijkl are the dielectric and elastic tensors, respectively.
ekij is the piezoelectric tensor, f ijkl is flexoelectric coefficient tensor,
rijklm denotes the coupling between the strain and strain gradient.
The tensor gijklmn represents the strain gradient effect. Sij is the strain
tensor, gjkl is the strain gradient tensor and Ei is the electric field
vector, which are defined, respectively, as Sij ¼ ðuj;i þ ui;jÞ=2,
gijk ¼ Sij;k and Ei ¼ �u;i, where u is the displacement, u is the elec-
tric potential, the comma indicates differentiation with respect to
the spatial variables.
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This means that the fifth term in the right side of Eq. (1) is the
contribution from the surface of material. Let

Us ¼ 1
2
rijklmSijgklm; ð3Þ

then, Us is the surface energy of unit surface area and it includes the
contribution from the surface stresses. In the present work, the sur-
face effects of material are neglected, namely, rijklm is null. More-

over, gjkhmni is approximated by gjkhmni ¼ l21dhicjkmn [16], where l1 is
internal characteristic length of microstructure. Then, the constitu-
tive equations can be obtained from the electric Gibbs free energy
as

rij ¼ cijklSkl � ekijEk; ð4aÞ

rjkh ¼ �f ijkhEi þ l21dhicjkmngmni; ð4bÞ

De
k ¼ eklEl þ ekijSij þ f klmnglmn; ð4cÞ

where rij is the classical Cauchy stress tensor, rjkh is the higher-
order stress tensor, and De

k is the electric displacement vector. It is
noted that rij ¼ rji and rjkh ¼ rkjh.

The kinetic energy density with consideration of the micro-
inertial effect can be expressed as [14,15]

T ¼ 1
2
q _uj _uj þ 1

6
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where q is mass density, and l2 is the micro inertia characteristic
length. Then, the variation of the electric Gibbs free energy density
(electrostatic force is neglected) plus the kinetic energy density are
[2,3,14],
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where nj is the unit normal vector of the boundary of solid,
Djð Þ ¼ ð Þ;j � njnkð Þ;k, Dð Þ ¼ nlð Þ;l .

The variation of work done by external forces can be expressed
as

dW ¼
Z
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FiduidV þ

Z
a
Piduidaþ

Z
a
RiDduidaþ

Z
a
qduda; ð7Þ
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