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a b s t r a c t

In health monitoring applications of composite materials, the health state of specimens is often evaluated
using naturally occurring and simulated Acoustic Emission stress waves. For such applications, identify-
ing the arrival times of the extensional and flexural wave modes from acquired signals is a crucial step,
and must be performed reliably and potentially on large sets of signals. This article proposes using the
wavelet decomposition of a signal to develop a fast, algorithmic and automated approach to estimate
the arrival times of the extensional and flexural wave modes. Algorithms are developed that estimate
the two arrival times using wavelet decomposition data, and which can be employed to consistently
and reliably identify the arrival times from large sets of signals iteratively. MATLAB scripts to automat-
ically execute the algorithms are also developed, and are made available online.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Acoustic Emission and Lamb waves

One of the major methods of studying the health state of com-
posite materials is to use Acoustic Emission (AE) signals [1–3]. The
acoustic stress waves that are generated any time a localized load
redistribution or energy release event occurs in a material are
referred to as Acoustic Emission. In metallic materials, AE is
generated any time a crack is created or propagated; in composite
specimens, AE is generated due to a variety of events, such as fiber
breaks, matrix cracks and delaminations [4–6]. In contrast with
such natural AE, acoustic stress waves can also be generated by
the sudden removal of a small concentrated load on the specimen.
Such a sudden load removal can be used to generate simulated AE
(since this simulates load-redistributions that generate natural
AE).

In specimens taking the shape of ‘plates’, i.e. where one dimen-
sion is much smaller than the other two dimensions, Lamb wave
modes dominate [7–9] AE wave propagation. Specifically, two
infinite sets of Lamb wave modes propagate: (a) symmetric modes,
or longitudinal modes, with vibrations symmetrical about the mid-
plane of the plate, and (b) anti-symmetric modes, or transverse
modes, with vibrations anti-symmetric about the midplane. When

the propagating waves have wavelengths greater than the thick-
ness of the plate, the plate can be termed a ‘thin plate’. In such
plates, only two Lamb wave modes propagate: the Extensional
and Flexural mode [10,3]. The extensional mode is dominated by
in-plane displacements and are not dispersive in nature. The flex-
ural mode is dispersive, i.e. their wave velocities vary according to
frequency, and is dominated by out-of-plane displacements [11].

In Acoustic Emission testing, these extensional and flexural
modes are of most interest, since many specimens under consider-
ation satisfy the ‘thin plate’ criterion. Further, since in most cases
the sensors that acquire the signals are attached to the ‘face’ of
the plate, these sensors only detect the out-of-plane components
of any propagating waves. For the extensional mode, the out-of-
plane component is much smaller than its in-plane component;
for the flexural mode this is exactly reversed. Therefore, for most
cases, the acquired signals have a small extensional mode compo-
nent arriving first, followed by a larger flexural mode component.

A sample AE signal, as acquired by two sensors along the same
path traveled by the stress wave, is shown in Fig. 1. The flexural
mode in Fig. 1a arrives soon after the extensional mode, indicating
that the source is quite near to the sensor. On the other hand, in
Fig. 1b the time separation between the arrival of the two wave
modes is larger, showing that the sensor is farther from the signal
source. Considering the same AE wave being detected by two sen-
sors, this difference in arrival between the extensional and flexural
modes, as well as the difference between the signal amplitudes,
provide clues as to the location of the signal source.
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1.2. Wavelet analysis

Wavelet analysis [12] is an important tool [13,14] in the time-
frequency analysis of transient signals such as ultrasonic stress
waves. The Fourier transform shows the frequency content of the
entire signal, but the temporal aspects of the frequency compo-
nents are lost. The windowed Fourier Transform attempts to
improve on this, but has the disadvantage of using a time window
of constant time width, thereby losing any information about wave
components whose wavelengths are longer than the window
width. The wavelet transform provides a versatile method to dis-
criminate signal components along both the time and frequency
axes.

Similar to the Fourier transform, the basic idea of the wavelet
transform is to use a basis function (called the ‘mother wavelet’)
to compare and characterize different portions of the signal. Unlike
the Fourier transform, which only uses sine and cosine waves as
basis functions and their higher harmonics to match higher fre-
quency components, the wavelet transform may use many differ-
ent kinds of mother wavelets. The mother wavelet has the

property of being transient, i.e. having non-zero amplitude only
for a small duration in time. In addition, the wavelet transform per-
forms two operations [14] to identify different frequency compo-
nents appearing in different time positions in the signal: (a)
translation of the mother wavelet along the time axis, and (b)
dilatation and contraction of the mother wavelet to match differ-
ent frequencies. The mathematical differences between Wavelet
spectra and Fourier spectra are described by Perrier et al. [15].

The Gabor Wavelet Transform, or the Continuous Wavelet
Transform (CWT), performs well [16] with transient signals, and
is given by:

Xw a; bð Þ ¼ 1

jaj1=2
Z 1

�1
x tð Þw t � b

a

� �
dt ð1Þ

where

� xðtÞ is the input signal as a function of time
� wðtÞ is the particular mother wavelet used, and must be contin-
uous both in the time and frequency domains. wðtÞ denotes the
complex conjugate of wðtÞ.
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(a) Sensor nearer to the source of the signal.
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(b) Sensor farther to the source of the signal.

Fig. 1. Sample Acoustic Emission signal. Extensional and Flexural modes are indicated.
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