
Axial acoustic radiation force on rigid oblate and prolate spheroids in
Bessel vortex beams of progressive, standing and quasi-standing waves

F.G. Mitri
Chevron, Area 52 Technology – ETC, Santa Fe, NM 87508, United States

a r t i c l e i n f o

Article history:
Received 27 July 2016
Received in revised form 26 September
2016
Accepted 29 September 2016
Available online 30 September 2016

Keywords:
Acoustic radiation force
Spheroid
Bessel beam
Tractor beam
Acoustical tweezers
Partial-wave series expansion (PWSE)

a b s t r a c t

The analysis using the partial-wave series expansion (PWSE) method in spherical coordinates is extended
to evaluate the acoustic radiation force experienced by rigid oblate and prolate spheroids centered on the
axis of wave propagation of high-order Bessel vortex beams composed of progressive, standing and
quasi-standing waves, respectively. A coupled system of linear equations is derived after applying the
Neumann boundary condition for an immovable surface in a non-viscous fluid, and solved numerically
by matrix inversion after performing a single numerical integration procedure. The system of linear equa-
tions depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated but
converging PWSEs in the least-squares sense. Numerical results for the radiation force function, which is
the radiation force per unit energy density and unit cross-sectional surface, are computed with particular
emphasis on the amplitude ratio describing the transition from the progressive to the pure standing
waves cases, the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid), the
half-cone angle and order of the Bessel vortex beam, as well as the dimensionless size parameter. A gen-
eralized expression for the radiation force function is derived for cases encompassing the progressive,
standing and quasi-standing waves of Bessel vortex beams. This expression can be reduced to other types
of beams/waves such as the zeroth-order Bessel non-vortex beam or the infinite plane wave case by
appropriate selection of the beam parameters. The results for progressive waves reveal a tractor beam
behavior, characterized by the emergence of an attractive pulling force acting in opposite direction of
wave propagation. Moreover, the transition to the quasi-standing and pure standing wave cases shows
the acoustical tweezers behavior in dual-beam Bessel vortex beams. Applications in acoustic levitation,
particle manipulation and acousto-fluidics would benefit from the results of the present investigation.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Radiation force simulations in acoustical tweezers applications
have become an indispensable tool to scientific research dealing
with the interaction of acoustical waves (or beams) with objects,
especially in acoustofluidics [1,2], particle manipulation [3] and
acoustical tweezers [4–18], elasticity imaging [19], and acoustic
levitation [20–25] to name a few applications. Numerical computa-
tions are essential as they provide guidance for optimal experi-
mental design purposes. Furthermore, since experiments require
adequate instrumentation and hardware equipment (which may
be often expensive), and are time-consuming so in practice only
a limited number can be performed on well-defined geometries,
most investigations resort initially to numerical computations of
the radiation force of acoustical waves exerted on an object placed
along their path. By developing fast and accurate computational

tools, precise radiation force modeling of any scenario of interest
can be made possible. This includes extreme cases satisfying cer-
tain limits which may not be entirely attainable experimentally;
for example, the completely rigid or soft particle cases. Clearly,
there is a continuing need for improved modeling, analytical theo-
ries and computer simulations, especially when more complex
(non-circular) geometries and/or beam profiles of arbitrary wave-
fronts are considered.

Various investigations limited to the long wavelength limit
examined the acoustic radiation force on disks [26–29] and prolate
spheroids [30] in plane progressive and standing waves. Moreover,
the finite-element method [31] (FEM) has been utilized by means
of the shape perturbation method to evaluate the acoustic radia-
tion force on a (non-spherical) rigid spheroid in plane standing
waves.

Notice, however, that the shape perturbation method is only
applicable to a near-spherical particle, and leads to significant
errors for the cases of moderately to highly elongated spheroids.
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An analysis based on the boundary element method (BEM) [32] has
been also developed, in which the acoustic radiation force experi-
enced by non-spherical particles has been computed for cases
where the target’s dimensions are much smaller than the wave-
length of the incident illuminating plane waves (i.e. Rayleigh limit).
The lack of adequate data beyond the long-wavelength limit as
well as the restriction to the infinite plane wave case provided
the impetus to further develop an improved solution [33] based
on the modal-matching method in spherical coordinates to com-
pute the acoustic radiation force on rigid oblate and prolate spher-
oids applicable to zeroth-order Bessel beams, including the infinite
plane wave case.

In contrast to plane (or Gaussian) waves, Bessel beams possess
several features, such as the ability to reform after encountering an
obstruction [34,35]. They also have a limited-diffraction capability
such that they maintain a relatively long depth-of-field as they
propagate in space [36]. Due to these advantages, such beams
are well established both theoretically and experimentally, and
related innovative applications in fundamental and applied physics
are increasingly expanding in various fields.

The zeroth-order Bessel beam is of non-vortex type, while the
higher-order is of vortex (i.e. spiral or helicoidal) type, such that
its incident velocity potential (or pressure) field varies according
to exp(im/), where m is any (real) integer number known as the
order or the topological charge, and / is the azimuthal angle. This
effect can be clearly emphasized by considering a computational
example for the intensity vector field I =R{p⁄v} of a Bessel vortex
beam, where the parameters p and v denote the incident linear
pressure and vector velocity, respectively. The superscript ⁄
denotes the conjugate of a complex number. The results are dis-
played in Fig. 1 for the computational plots (with stereographic
projections in the bottom plane superimposed on the cross-
sectional profile of the beam) corresponding to the spatial distribu-
tion of the intensity vector field (shown by the arrows) of a Bessel
beam sampled uniformly on the surface of the spheroid. The plots
in panels (a)–(c) correspond to a zeroth-order Bessel (non-vortex)
beam where a maximum intensity at the center of the beam is pro-
duced, whereas panels (d)–(f) are for a first-order Bessel spiral (or
vortex) beam with a unit topological charge (i.e., m = 1) where a
null [37] (or phase singularity along the axis of wave propagation)
is manifested at the center of the beam. The incident Bessel waves
illuminate spheroidal particles with different aspect ratios cen-
tered on the axis of the beam. The particle in panels (a), (d) has
the shape of an oblate spheroid, whereas in panels (b), (e), the par-
ticle is a sphere. In panels (c), (f), the particle has the shape of a
prolate spheroid. The characteristic of the vortex is clearly shown
in panels (d)–(f) with an intensity null at the center of the beam.
Depending on the vortex helicity (m = ±1), the arrows representing
the intensity vector field can be directed counter-clockwise or
clockwise, respectively.

While there exists significant literature on the interaction of
acoustical Bessel beams with spherical objects including several
investigations focused on the (arbitrary) scattering [38–40] and
radiation forces [41–45], the spheroidal object has been only
recently considered from the standpoint of acoustic scattering
[46–49] (using also the T-matrix formalism [46,50]) and radiation
force theories [33,51]. As the properties of the higher-order beam
solutions (using progressive waves) [51] differ considerably from
the fundamental (zeroth-order) case [33], it is of some importance
to develop an appropriate analytical formalism to analyze and
compute numerically the acoustic radiation force of Bessel vortex
beams of standing and quasi-standing waves exerted on spheroids.
Typically, standing and quasi-standing waves are obtained by
counter-propagating two (or more) Bessel vortex beams. This con-
figuration is also known as the dual-beam tweezers as suggested in
the original version of acoustical tweezers [52]. Note that the

formalism used for Bessel vortex beams of progressive waves
[51] is not applicable to the dual-beam configuration, nor can it
be considered as an approximate solution because the localizing
force strengths for the representative standing and quasi-
standing wave modes depend on the spatial phase which is not
the case for progressive waves. Moreover, the standing and
quasi-standing waves in the dual-beam configuration form stable
positioning in acoustical potentials, a situation that can be hardly
achieved using the single-beam of progressive waves. Such limita-
tions provide the motivation and impetus to undertake the present
analysis, and develop an analytical method that encompasses all
types of waves in Bessel vortex beams, ranging from progressive,
standing to quasi-standing waves.

In this analysis, the acoustic scattering of Bessel vortex beams of
quasi-standing waves by a rigid (sound impenetrable) oblate or
prolate spheroid (Fig. 2) is first solved first using the partial-
wave series expansion (PWSE) method in spherical coordinates.
Then, it is used to derive a generalized analytical expression for
the axial acoustic radiation force (i.e., acting along the direction
of wave propagation) that is applicable to the cases of progressive,
quasi-standing and standing waves in Bessel vortex beams. It is
important to note here that such spheroidal (convex-like) surfaces
present a serious challenge because the method of separation of
variables (used to evaluate the scattering and subsequently the
radiation force) becomes inapplicable. In other words, the
spherical-wave functions used in the method of separation of vari-
ables become non-orthogonal on the object’s surface, conse-
quently, adequate convergence and accuracy of the results can be
hardly achieved. Nonetheless, this difficulty is resolved by using
the PWSE using an improved methodology based on modal match-
ing. The method requires solving a system of linear equations by
matrix inversion procedures [i.e. Eq. (15) in the following] which
depends on the partial-wave index n and the order m of the Bessel
vortex beam. For the case considered in the present manuscript,
the Neumann boundary condition for a rigid immovable surface
is satisfied in the least-squares sense with negligible truncation
numerical error. This original semi-analytical approach developed
for Bessel vortex beams is demonstrated for finite oblate and pro-
late spheroids, where the mathematical functions describing the
spheroidal geometry are written in a form involving single angular
(polar) integrals that are numerically computed using Gauss-
Legendre quadratures. Then, the axial radiation force is evaluated
stemming from an analysis of the far-field scattering, with partic-
ular emphasis on the aspect ratio (i.e., the ratio of the major axis
over the minor axis of the spheroid), the half-cone angle b and
the orderm of the Bessel vortex beam, as well as the dimensionless
size parameter kb. Moreover, the radiation force function expres-
sion reduces to progressive or equi-amplitude standing waves
depending on the choice of the coefficient R, defined as an
amplitude-ratio factor of the waves (Section 2).

2. Theoretical formalism

Consider an acoustical monochromatic high-order Bessel vortex
beam of order m propagating in a nonviscous fluid, and incident
upon a spheroid centered on its axis of wave propagation [i.e.,
end-on incidence (Fig. 2)]. The spheroid has an equatorial radius
b (known as the semi-minor axis), and a is the distance from the
center to the pole along the symmetry axis z, corresponding to
the semi-major axis.

The incident field is assumed to be composed of two counter-
propagating Bessel vortex beams of the same order but with
different amplitudes. This generally defines an acoustic velocity
potential field of quasi-standing waves.

In a system of spherical coordinates (r, h, /) with its origin cho-
sen at the center of the spheroid, the incident velocity potential
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