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a b s t r a c t

Stress corrosion is the major failure type of bridge cable damage. The acoustic emission (AE) technique
was applied to monitor the stress corrosion process of steel wires used in bridge cable structures. The
damage evolution of stress corrosion in bridge cables was obtained according to the AE characteristic
parameter figure. A particle swarm optimization cluster method was developed to determine the rela-
tionship between the AE signal and stress corrosion mechanisms. Results indicate that the main AE
sources of stress corrosion in bridge cables included four types: passive film breakdown and detachment
of the corrosion product, crack initiation, crack extension, and cable fracture. By analyzing different types
of clustering data, the mean value of each damage pattern’s AE characteristic parameters was deter-
mined. Different corrosion damage source AE waveforms and the peak frequency were extracted. AE par-
ticle swarm optimization cluster analysis based on principal component analysis was also proposed. This
method can completely distinguish the four types of damage sources and simplifies the determination of
the evolution process of corrosion damage and broken wire signals.

� 2017 Published by Elsevier B.V.

1. Introduction

The cable structure is one of the most important load-carrying
members of long-span bridges. When positioned in natural envi-
ronments for a long time, the polyethylene (PE) sheath wrapped
on the steel surface of bridge cables, especially those located in
damp environments in the sea, presents different levels of cracks.
After the emergence of a crack on the PE sheath, the steel strands
or high-tensile steel wires inside the sheath are exposed to the
external environment; thus, corrosion occurs. Under the effect of
stress, the localized corrosion pit on the surface of steels exhibits
stress concentration. This stress concentration significantly affects
the mechanical property of steels. Rupture failure will occur
although the stress is far less than the yield strength of steels [1–
3]. Therefore, stress corrosion monitoring of bridge cables plays
an important role in ensuring the safety of bridges.

The stress corrosion mechanisms in bridge cables are highly
complex. Different damage types involve various damage source
signals, such as passive file breakdown, production of hydrogen
bubbles, hydrogen embrittlement, corrosive pitting, initialization
and extension of cracks, and fracture. Effective methods for the

monitoring of bridge cable stress corrosion are scarce. Common
existing methods include artificial detection, ultrasonic testing,
and magnetic leakage [4–7]. Artificial detection cannot identify
internal defects nor quantitatively evaluate the damage state. Thus,
its outcome involves many human factors. Ultrasonic testing is the
most common means to detect corrosion in bridge cables. The
exact location and damage condition of corrosion can be deter-
mined with this method. However, experiment results have indi-
cated that although this method can detect the locations of
damage near the head of steel wires, effective corrosion damage
monitoring of the wires in the distance remains challenging. Mag-
netic leakage method is also commonly utilized to detect damage
in metal materials. However, this method has several apparent dis-
advantages. When used to detect bridge cables with protection, the
monitoring signals are too weak to receive, the monitoring accu-
racy does not meet the requirements, and different types of defects
cannot be distinguished. This study introduces the application of
acoustic emission (AE) technology to monitor stress corrosion in
bridge cables. AE is a dynamic monitoring method. The monitoring
signal originates from the structure itself, and sensor placement is
convenient. All-weather monitoring can thus be realized without
delaying traffic. Stress corrosion monitoring with AE has been
extensively applied, and several research achievements have been
attained. Characteristic AE features (e.g., amplitude, energy, dura-
tion, rise time, counts, and frequency) are commonly extracted to
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analyze the micro failure mechanisms of different materials. AE
waveform features, such as duration and frequency, generally carry
information about the mode of the crack. Additionally, the AE
amplitude recorded during loading is proportional to the intensity
of the damage event and the emission energy that is connected to
the intensity of the crack. AE counts characterize the oscillation
frequency of the damage signal.

Ramadan [8] investigated high-strength steel stress corrosion
cracking with the AE technique. This study produced promising
results for the potential in situ use of AE in real-time health mon-
itoring of eutectoid steel cables. AE has been utilized to monitor
concrete and steel wire damage and failure in pre-stressed con-
crete [9–11]. AE can detect corrosion, macro cracks, and crack
propagation in representative structures. AE has also been
employed as a tool to detect corrosion processes in 304 stainless
steel [12–14]. Different damage types (uniform corrosion, pitting,
and crevice corrosion) can be identified with typical AE feature sig-
nals. However, related studies on the description of stress corro-
sion mechanisms in bridge cables according to AE signals and
identification of the damage source at different stages are rela-
tively scarce. AE is influenced by the signal characteristics and
attenuation properties of bridge cables. Uncertainty is also an
important issue in damage classification. Uncertainty exists in
material properties, sensor characteristics, noise and nucleation,
and evolution [15]. Different damage sources are affected by one
another. Distinguishing the different stages of damage in a corrod-
ing structure is difficult when the traditional AE analysis method is
utilized. For the cluster algorithm, the most frequently used meth-
ods are k-means, self-organized map combined with k-means, and
fuzzy-c means algorithm. The k-means algorithm is the simplest
and most effective method for AE signal clustering. Cluster analysis
includes three main steps: AE characteristic parameter extraction,
clustering algorithm selection, and validation of the defined clus-
ters [16,17]. Calabrese [18] proposed a combination of principal
component analysis and self-organizing map algorithms as a new
procedure to identify the progression of different damage mecha-
nisms in pre-stressed concrete beams. Johnson [19] developed a
new AE uncorrelated feature to solve the dependency of the clus-
tering process on varying parameters. With the AE signal differ-
ence, Máthis et al. [18] identified plastic deformation and crack
propagation during stress corrosion cracking of stainless steel. Li
et al. [21] adopted k-means clustering to study the stress corrosion
process of 304 stainless steel for AE signal classification. Several
researchers applied the signal process method to identify different
corrosion sources. Piotrkowski et al. [22] studied corroded galva-
nized steel through wavelet and bi-spectrum analyses of AE
signals.

In the current study, a stress corrosion experiment was con-
ducted on steel wires used in bridge cables. The AE characteristic
signal at different damage stages was obtained. A particle swarm
optimization cluster algorithm was proposed to obtain the AE
characteristic signal and determine the corrosion mechanisms of
different damage sources. Subsequently, to improve the effect of
clustering, a particle swarm optimization clustering algorithm
based on principal component analysis was introduced.

2. AE particle swarm optimization cluster algorithm

2.1. Basic principle of the particle swarm optimization cluster
algorithm

The shortcoming of conventional clustering algorithms is that
they easily fall into the local optima. In this paper, a global optimal
particle swarm cluster algorithm is presented. Particle swarm opti-
mization can produce collective intelligence to guide the optimal

search through cooperation and competition between particles.
The solutions of each generation exhibit double excellence: self-
learning for individual improvement and learning from others.
Thus, the algorithm can obtain the optimal solution after a few
iterations only.

Given an n-dimensional space containing m particles z = {z1,
z2, . . . , zm}, each particle can be considered the solution of one
combinational optimization problem, and the position coordinates
of each particle are denoted by zi = {zi1, zi2, . . . , zin}. Each particle
has a unique direction of motion denoted by Vi = {vi1, vi2, . . . , vin}.
The entire particle swarm moves in the solution space. The parti-
cles adjust their location to search for a new solution through local
and global extrema. During the motion, each particle searches and
records the optimal solution, which is denoted by Pid (local optimal
extremum). The best solution identified by all particles is denoted
by Pgd (global optimal extremum). When these two optimal solu-
tions are found, the updating displacement–velocity formula is
obtained as follows:

v idðt þ 1Þ ¼ w � v idðtÞ þ g1 � randðÞ � ðPid � zidðtÞÞ þ g2 � randðÞ
� ðPgd � zidðtÞÞ; ð1Þ

zidðt þ 1Þ ¼ zidðtÞ þ v idðt þ 1Þ; ð2Þ

where vid(t + 1) is the speed of the ith particle in the dth dimension
during the (t + 1)th iteration. To prevent particles from moving too
fast, speed limit Vmax is necessary. When vid(t + 1) > vmax, vid(t + 1)
= vmax; when vid(t + 1) < �vmax, vid(t + 1) = �vmax. This transforma-
tion can be realized with Formula (3).

w ¼ wmax � iter �wmax �wmin

itermax
; ð3Þ

where iter denotes the current number of iterations and itermax
denotes the default maximum number of iterations. w represents
inertia weight, which can be utilized to help a particle maintain
its inertia. If w = 0, the speed of a particle will not have memorabil-
ity. The particle swarm will directly shrink to the current global
optimal position and lose the ability to conduct subsequent
searches. As a general rule, w is a random number between 0 and
1. g1 and g2 are the acceleration constant and the speed regulation
parameter. They denote the acceleration weight of particles moving
to extreme points Pid and Pgd, and rand() is a random number
between 0 and 1.

The preceding formula shows that velocity updating of particles
has three parts. The updating mechanism is shown in Fig. 1. The
three parts are as follows:

(1) a particle’s original speed, vid(t);
(2) the direction between the particle and the best position it

has experienced, Pid–zid(t);
(3) the direction between the particle and the best position all

the particles have experienced, Pgd–zid(t).

w
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Fig. 1. Schematic of particle update.
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