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a b s t r a c t

The paper presents an application of the reverberation-ray matrix (RRM) method for guided wave-based
non-destructive evaluation (NDE). An exact analytical model for elastic wave propagation in multilayered
anisotropic composites is developed with the RRM method. Dispersion curves, namely phase and group
velocities varying with frequencies, can be calculated based on the analytical model, which are critical to
the guided wave-based NDE. In addition, the characteristics of the guided wave propagation along differ-
ent directions in laminated composites with different anisotropic degrees are investigated. Finally, the
results obtained from the model are verified by finite element simulations.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays the amount of composite material used in aircraft
structures is gradually increasing, from secondary to primary
structures, up to 50% in the Boeing’s B787 and 53% in the Airbus’
A350 XWB, because of their excellent stiffness and strength to
weight ratios [1]. Delamination is one of the most common and
dangerous damages in laminated composites, which can signifi-
cantly reduce structural stiffness and cannot observe from outside.
The damage propagates accompanied with other damage types
under fatigue loads, and leads to structural failure at last [2].
Guided waves those can propagate long distances and are sensitive
to delamination damage are appropriate choices to enhance lami-
nate’s integrity [3]. However, due to geometry boundaries in lam-
inates, multiple dispersed wave modes exist, which makes the
guided wave-based NDE complex [4]. In addition, the wave charac-
teristics along different directions are different because of the ani-
sotropy of laminates. Therefore the damage inspection in
laminates is more difficult than that in isotropic metallic materials
[5].

Dispersion curves, namely phase and group velocities varying
with frequencies, provide important information on wave propaga-
tion in waveguides, which are critical to the guided wave-based
NDE. In the analytical methods, the most commonly used are the

transfer matrix method and global matrix method [6–9]. The trans-
fer matrix is a simple and direct method to implement that the
matrix order is unchanged regardless of the number of layers in
laminates. However, when evanescent waves exist in the cases of
high frequencies or long propagation distances, the solutions
become unstable. The global matrix method overcomes the short-
coming of the transfer matrix method by modifying the origins of
the bulk waves in each layer according to their propagation direc-
tions. In addition to the accurate methods, truncated Legendre
orthogonal polynomials can also be used to approximate the dis-
placement fields of the cross section and then calculate the disper-
sion curves [10]. In the numerical methods, the finite element
method (FEM) is a well-developed one which can solve various
complex problems in practice, including wave propagation. The
semi-analytical FEM is used to investigate the guided wave propa-
gation in waveguides with finite cross sections and multilayered
structures, in which wave motions in the propagation direction
are formulated as plane waves, and the cross sections are dis-
cretized into finite elements [11–13]. In the full FEM, a unit cell
representing a waveguide is discretized into finite elements, and
then dispersion curves can be calculated by introducing Bloch
boundary conditions on the unit cell [14–16]. The FEM and spectral
element method (SEM) can also be used to simulate the process of
wave propagation and extract the characteristics [17,18]. However,
the numerical methods above require elements to approximate the
displacement fields, which causes the increase of computation
effort at higher frequencies.
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The RRM is an alternative analytical method to obtain disper-
sion curves in multilayered anisotropic composites, which was
proposed by Howard and Pao in 1998 [19]. Due to the settings of
dual coordinate systems, elements in the phase matrix can always
be kept as exponentially decaying functions when evanescent
waves exist. Therefore the method avoids the numerical instability
problem in the cases of high frequencies or long propagation dis-
tances, which is occurred in the transfer matrix method [20–22].
The RRM method is appropriate to calculate transient responses
because the inverse Fourier transform with singularities can be
avoided by the Neumann series expansion [19–21]. The method
is also suitable to investigate wave propagation characteristics
due to its unified formulation and numerical stability [22,23].
However, few studies have been focused on this direction, espe-
cially the application for guided wave-based NDE.

The paper presents an application of the RRM method for
guided wave-based NDE. An exact three dimensional analytical
model for elastic wave propagation in laminated composites is
developed with the RRM method. The expression of group velocity
is derived analytically. Wave propagation characteristics are calcu-
lated along different directions, which are different from those in
isotropic metallic plates. The remainder of this paper comprises
four major parts. The basic principle of the RRM method is intro-
duced and the problem is formulated in Section 2. The finite ele-
ment models are developed to simulate wave propagation and
verify the RRM method in Section 3. In Section 4, the calculation
results are compared and analyzed. Finally, this paper is concluded
in Section 5.

2. RRM method for wave propagation

The RRM method is used to model guided wave propagation in
laminated composites. Displacements and out-of-plane stresses
are chosen as state variables to express state equations, which
makes the problem easier to solve.

2.1. Governing equations

The laminated composite is composed of unidirectional layers
which located in the xy-plane along different directions and
stacked along the z-axis as shown in Fig. 1. Due to the up and down
surfaces and the anisotropy of each layer, the guided waves in lam-
inates present three characteristics those are dispersion, existence
of multiple modes and velocity anisotropy.

In order to describe the wave motions at any frequency accu-
rately, three dimensional equations on the assumptions of small
deformation and linear elasticity are used to model laminated
composite. In each layer, the geometry, constitutive and equilib-
rium equations can be respectively written as

e ¼ LTu; r ¼ De; Lr ¼ q€u ð1Þ
where q is the material density, and

u ¼ ½ux;uy;uz�T; e ¼ ½ex; ey; ez; eyz; exz; exy�T;
r ¼ rx;ry;rz;ryz;rxz;rxy

� �T ð2Þ

represent the displacement, strain and stress vectors respectively,
and
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ð3Þ
represent the stiffness matrix and differential operator matrix. The
generalized Hooke’s law is used to describe the material anisotropy.
For harmonic plane guided waves along the angle a with respect to
the x-axis in laminates, the field variables can be written as

u ¼ buðzÞeix x
cp

cosaþ y
cp

sina�t

� �
; e ¼ beðzÞeix x

cp
cosaþ y

cp
sina�t

� �
;

r ¼ brðzÞeix x
cp

cosaþ y
cp

sina�t

� �
ð4Þ

where x is the angular frequency, and cp is the phase velocity. The
commonly used wave number k is replaced by cp because velocities
are more concerned than wave numbers in guided wave-based
NDE. Combining Eqs. (1) and (4), the governing equation of wave
motions can be expressed as

dbv
dz

¼ Aðcp;a;xÞbv ð5Þ

where

bv ¼ bux; ûy; buz; brxz; bryz; r̂zz
� �T ð6Þ

A ¼
�ix~D�1
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33
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ð7Þ

Mi ¼ cosa
cp

eDi1 þ sina
cp

eDi2; eDij ¼
c1i1j c1i2j c1i3j
c2i1j c2i2j c2i3j
c3i1j c3i2j c3i3j

264
375 ð8Þ

The state vector bv represents the displacements and out-of-
plane stresses. The constant cklmn is an alternative way to express
the material stiffness Dij in Eq. (3) in the four-order form. I3 is
the 3-by-3 unit matrix. The solution of Eq. (5) is

bvðzÞ ¼ UeKzw ¼ U� Uþ½ � eK�z 0
0 eKþz

� �
a
d

� �
ð9Þ

where

U ¼ ½u1;u2; . . . ;u6�; K ¼ diagðk1; k2; . . . ; k6Þ ð10Þ
k and u represent the eigenvalue and eigenvector of the matrix A
respectively. The vector w contains the undetermined coefficients.
The eigenvalues exist in pairs, which have opposite signs, because
waves in material can propagate in two opposite directions. Here
the two waves in pairs are assigned to the groups with the signs ‘
+’ and ‘�’ respectively, corresponding to the undetermined coeffi-
cient vectors a and d, which is the critical step to keep the compu-
tation numerically stable and illustrated in detail in Section 2.3.

2.2. Dual coordinate systems

The setting of dual coordinate systems is the core difference
between the RRM method and others as shown in Fig. 2, where
the x- and z-axes are both in the opposite directions and the y-axes
are in the same. hj is the thickness of the layer j with the bound-Fig. 1. Laminated composite in a global coordinate system.
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