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a b s t r a c t

It is found that leaky backward Lamb waves, i.e. waves with negative energy-flux velocity, propagating in
a plate submerged in a liquid possess extraordinary energy properties distinguishing them from any
other type of waves in isotropic media. Namely, the total time-averaged energy flux along the waveguide
axis is equal to zero for these waves due to opposite directions of the longitudinal energy fluxes in the
adjacent media. This property gives rise to the fundamental question of how to define and calculate cor-
rectly the energy velocity in such an unusual case. The procedure of calculation based on incomplete inte-
gration of the energy flux density over the plate thickness alone is applied. The derivative of the angular
frequency with respect to the wave vector, usually referred to as the group velocity, happens to be close
to the energy velocity defined by this mean in that part of the frequency range where the backward mode
exists in the free plate. The existence region of the backward mode is formally increased for the sub-
merged plate in comparison to the free plate as a result of the liquid-induced hybridization of propagat-
ing and nonpropagating (evanescent) Lamb modes. It is shown that the Rayleigh’s principle (i.e.
equipartition of total time-averaged kinetic and potential energies for time-harmonic acoustic fields) is
violated due to the leakage of Lamb waves, in spite of considering nondissipative media.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

The wave modes with opposite directions of the phase velocity
and the energy flux, alternatively referred to as waves with nega-
tive group velocity or negative energy-flux velocity and also
shortly as backward waves, attract a great deal of attention in
the various fields of wave physics. It is so, particularly, in acoustics,
where plate modes of Lamb type and of pure-shear polarization
can have the negative group velocity in limited ranges of frequen-
cies and thicknesses in isotropic and anisotropic plates [1–9]. In
spite of a few efforts of analysis of leaky backward Lamb waves
[10–16], no studies until now have directly examined their energy
properties, although these properties belong to the most funda-
mental ones for waves of any nature. The present paper is focused
on exploring such properties. It is found that the total time-
averaged energy flux (i.e. energy flux density integrated over the
depth) of waves, treated here, is equal to zero while the mutually
opposite longitudinal components of local energy fluxes in a plate
and in a liquid are nonzero. This property gives rise to the funda-

mental question of how to define correctly the energy velocity in
such an unusual case. Another open question is whether it is pos-
sible to calculate this velocity by differentiating the dispersion
curves in the same way as the group velocity is found. The third
important question is about the validity of the Rayleigh’s principle
of equipartition of the total time-averaged kinetic and potential
energies in the system under study. The answers to these questions
are given in the present paper. In the beginning, we overview the
main features of leaky backward Lamb waves that are necessary
to study their energy properties. The first symmetric Lamb mode
(S1) in a free isotropic plate, as is known, can be backward wave
in a limited range of frequencies [3]. It is just this mode that is con-
sidered below in the case of plate being in contact with the same
liquid on both sides.

2. Decay constants and phase velocities for backward leaky
waves

The equation of motion in a solid for harmonic waves varying
with time as expð�ixtÞ has the form

�ixqv i ¼ @jTij; ð1Þ
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where x is the angular frequency, q is the mass density, v i are the
particle velocity components, @j ¼ @=@xj, xj are Cartesian coordi-
nates. Here and hereafter summation over repeated subscripts
i; j; k; l ¼ 1� 3 is implied. The stress tensor Tij is related to the strain
tensor Skl by the Hook’s law, Tij ¼ cijklSkl, where cijkl is the elastic
stiffness tensor, Skl ¼ ð@luk þ @kulÞ=2, uk are the particle displace-
ment components. The time-harmonic waves in a non-viscous

liquid are described by the Helmholtz equation D/þ k2/ ¼ 0,
where D is the Laplacian, / is the potential of particle velocity,
v i ¼ @i/, k is the wavenumber. The coordinate perpendicular to
the plate surface is denoted as z axis, the coordinate along the plate
as x axis. The 2-dimensional wave-propagation problem depending
solely on these two coordinates is further considered. The boundary
conditions at the interface between the plate and the liquid are the
equality Txz ¼ 0 and the continuity of the normal component of
displacement uz and the traction force Tzz ¼ �p [17], where p is
the acoustic pressure, p ¼ �qlq@/=@t, qlq is the liquid mass density.

Lamb waves propagating in the submerged plate faster than
bulk waves in the liquid radiate their energy into outer spaces
and for this reason they become leaky waves and so are decaying
along the plate. The decay constant a can be found by the pertur-
bation method [17], assuming that the liquid-loading effect is
small

a ¼ ½Z0ðdÞ � Z0ð�dÞ�x2juzðdÞj2= 4 �PR
x

� �� �
; ð2Þ

where �PR
x

� �
is the time-averaged energy flux density integrated

across the plate, �PR
x

� � ¼ R d
�d

�PR
x dz, �P

R
i ¼ Reð�PiÞ, �Pi ¼ �Tijv�

j =2, d is the
half thickness of plate, uzðdÞ is the normal-displacement amplitude

at the surface, Z0ð�dÞ ¼ �qlqVcVL=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

L � V2
c

q
is the surface mechan-

ical impedance of liquid, Vc is the phase velocity of compressional
wave in the liquid, VL is the Lamb wave phase velocity. As evident
from Eq. (2), the quantities a and h�PR

x i should be of the same sign.
Since h�PR

x i is negative with respect to the wave vector for the back-
ward waves, the coefficient a is also negative for these waves. Note
that the right-hand side of Eq. (2) is determined by the unperturbed
solution of the wave propagation problem for the free plate. How-
ever all other formulas given below include the wave characteristics
for submerged plates.

The change in sign of a for the backward leaky waves has a crit-
ical effect on the structure of radiation in the liquid. The spatial
dependence of this radiation has the form expðikxxþ ikzzÞ, where
kx ¼ kL þ ia, kL ¼ x=VL. The projection kz of the complex wave vec-
tor, kz ¼ ReðkzÞ þ ib, is found from the Helmholtz equation

ReðkzÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2L þ a2 þ b2

q
; b ¼ �akL=ReðkzÞ: ð3Þ

Formulas (3) show that the constant b has the same sign as
ReðkzÞ, that is, the wave radiation in the liquid falls down along
the outer normal to the plate surface.

Thus, in contrast to the forward leaky waves, the backward ones
decay along the plate in the opposite direction to the wave vector
and their radiation in the liquid decreases rather than increases
with distance from the plate. These conclusions are in agreement
with those obtained analytically in Ref. [13] although here they
are based on other arguments. The negative sign of a is also in
agreement with numerical calculations in Ref. [11]. One should
note that there are partially analogous theoretical and experimen-
tal studies [18–20], pertaining to backward quasisymmetric waves
(denoted as S2b) on water-loaded empty shells. These studies reach
the same conclusion as above; that a < 0.

The dependencies of phase velocities of the S1 mode on the pro-
duct of frequency f and thickness h, calculated by us for aluminum
plate which is free (curves 1 and 2) or submerged in water (curves
3 and 4), are shown in Fig. 1.

The calculations are performed by a method similar to that
described in Ref. [21]. The curve 1 is given by the real root of the
secular equation and it corresponds to propagating waves, i.e.,
waves with nonzero time-averaged energy flux. The curve 2 is
given by the complex root of the secular equation and it corre-
sponds to nonpropagating waves, i.e., evanescent waves with zero
time-averaged energy transfer. The existence range of the back-
ward waves in the free plate is determined by the upper part of
the curve 1 located between the thickness resonance frequency
and the turning point of the curve (the common point of curves
1 and 2). The liquid loading results in the hybridization of the real
branch 1 and the complex branch 2 and the splitting of the previ-
ously continuous curve 1 into two separate complex branches 3
and 4. The branch 3 belongs to the backward wave, the branch 4
to the forward wave. These hybrid branches have opposite signs
of the decay constants a (Fig. 2).

Besides, the attenuation of backward leaky Lamb waves is sig-
nificantly greater (about ten times for aluminum/water combina-
tion) than for the forward ones. The high attenuation can be
avoided by choosing media with higher contrast of acoustic impe-
dances like aluminum in liquid helium (Fig. 2).

3. Zero energy flux for backward leaky waves

For further study of the energy properties, Eq. (1) is transformed
to a quadratic form [17] by multiplying it by the complex-
conjugated vector v�

i and the complex-conjugate of Eq. (1) by v i,
and then adding these equations by making use of the Hook’s
law. The result is

Fig. 1. The phase velocities Vph of the S1 mode of frequency f in free (1, 2) and
water-submerged (3, 4) aluminum plates of thickness h.

Fig. 2. The normalized leakage (product of the attenuation constant a and the
wavelength k) for the backward and forward modes of aluminum plate in water (3,
4) and liquid helium (30 , 40).
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