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a b s t r a c t

By means of series expansion theory, the incident quasi-Bessel-Gauss beam is expanded using spherical
harmonic functions, and the beam coefficients of the quasi-Bessel-Gauss beam are calculated. According
to the theory, the acoustic radiation force function, which is the radiation force per unit energy on a unit
cross-sectional surface on a sphere made of diverse materials and immersed in an ideal fluid along the
propagation axis of zero-order quasi-Bessel-Gauss progressive and standing beams, is investigated. The
acoustic radiation force function is calculated as a function of the spherical radius parameter ka and
the half-cone angle b with different beam widths in a progressive and standing zero-order Bessel-
Gauss beam. Simulation results indicate that the acoustic radiation forces with different waist radii
demonstrate remarkably different features from those found in previous studies. The results are expected
to be useful in potential applications such as acoustic tweezers.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Acoustic radiation forces in non-diffraction beams such as Bes-
sel waves, which are not subject to natural diffractive spreading
rules as explained by the Huygens-Fresnel principle, have been a
popular topic of research point. Relevant scientific studies in this
area have been published by researchers like Mitri [1–4] and Mar-
ston [5–7]. The acoustic radiation forces on a sphere in a Gauss
progressive and standing wave, which has energy-focusing proper-
ties, were investigated by Zhang and Wu [8,9]. In optics, the
axicon-based Bessel-Gauss resonator with concave output coupler
was presented in 2003 [10]. Hakola demonstrated a simple and
compact laser source that directly produces a Bessel-Gauss beam
[11]. Altucci experimentally investigated the use of diffraction-
free Bessel-Gauss beams to generate low-order harmonics in gas
[12]. In acoustics, Ding investigated the theoretical properties of
the fundamental and second harmonic components of the Bessel-
Gauss beam [13]. Mitri proposed a method based on the
Rayleigh-Sommerfeld surface integral to obtain rigorous partial-
wave series expansions for the incident field of acoustic spiraling
Bessel-Gauss beams [14]. Wang presented an approximate analyt-
ical description for Bessel-Gauss beams with a finite aperture [15].

However, no investigation of the acoustic radiation forces on a
sphere in a quasi-Bessel-Gauss wave has been published to date
[16].

The purpose of this investigation is to combine the results of
prior studies to provide a general expression for the acoustic radi-
ation force of zero-order quasi-Bessel-Gauss progressive and
standing wave fields on a sphere immersed in a non-viscous fluid.
The quasi-Bessel-Gauss wave possesses the non-diffraction advan-
tages of the Bessel wave and the energy-focusing properties of the
Gauss wave, and unusual phenomena emerge in the simulation.
These results could be helpful in understanding the influence of
the mechanism for Bessel and Gauss components on the acoustic
radiation force of a quasi-Bessel-Gauss wave. Moreover, it could
be significant for other potential applications in particle manipula-
tion and entrapment.

2. Theory

The Geometry of the problem for progressive quasi-Bessel-
Gauss wave is exhibited in Fig. 1. In the spherical coordinates sys-
tem, r denotes the distance from the observation point to the cen-
ter of the sphere, and h the scattering angle relative to the axis. The
standard Bessel-Gauss optical beam, which is a complex solution of
the paraxial wave equation, was thoroughly discussed in detail by
Bouchal [17], Gori [18], and others. The magnitude and beamwidth
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of the standard Bessel-Gauss beam varies with distance from the
focal region. Neglecting the viscosity and dissipation of an
infinite-extent ideal fluid, in which a homogeneous sphere is
immersed along the axis of a zero-order quasi-Bessel-Gauss beam,
the incident velocity potential of a zero-order quasi-Bessel-Gauss
progressive wave, which is a local approximation of a Bessel-
Gauss beam very near the focal region at z = 0, can be expressed as:

/i ¼ /0J0ðkrr?Þe�ðkrr?=kW0Þ2eiðkzz�xtÞ; ð1Þ
where /0 is the amplitude of the velocity potential, k is the wave
number, kz ¼ kcosb and kr ¼ ksinb denote the axial and radial wave
numbers, and b is the half-cone angle of the plane wave compo-
nents. z ¼ rcosh and r? ¼ rsinh represent the axial and radial
lengths, x is the angular frequency of the wave, W0 is the width
of the Gauss beam, and J0 is a zero-order cylindrical Bessel function,
which stands for the zero-order Bessel component of the beam.
Although the Gauss component is characterized by the beam width
W0, when W0 becomes infinitely large, the quasi-Bessel-Gauss
beam degenerates to a basic Bessel beam.

It is essential to note that the calculation results in this study
are subject to the following constraints. The beamwidth parameter
kW0 should greatly exceed 1, and the approximation in Eq. (1)

assumes that z=b � 1, where b ¼ kðW0Þ2=2. Therefore, the con-

straint 2kz � ðkW0Þ2 should be respected to avoid phase error.

2.1. Beam coefficients calculation

By means of series expansion theory, the incident velocity
potential of a zero-order quasi-Bessel-Gauss progressive wave
can be expanded with orthogonal spherical properties and finite
series properties as:

/i ¼ /0e
�ixt J0ðkr sin h sin bÞe�ðkr sin h sinb=kW0Þ2eikr cos h cosb

¼ /0e
�ixt

X1
n¼0

ð2nþ 1ÞinjnðkrÞPnðcos hÞCnPnðcosbÞ;
ð2Þ

where jn and Pn separately designate the n-th order spherical Bessel
function and the Legendre function /0e�ixt can be neglected in the
calculations for convenience. The coefficients Cn for odd and even
components can be independently calculated using the special
value method involving expansion with spherical harmonic func-
tions, which is also called finite series expansion and was originally
used to calculate the coefficients of Gauss beams in electromagnetic
fields [19]. The method can be used to compute the approximate
coefficients Cn for quasi-Bessel-Gauss beams using Eq. (2). If
s ¼ 1=kW0 is defined as the beam width parameter, and supposing
n is even, n can be replaced by 2l. The coefficient results Cn for n
even can be obtained as:

C2l ¼ ð�1Þl
Xl

j¼0

2ð2l�2jÞCð1=2þ 2l� jÞB2l�2j=ð
ffiffiffiffi
p

p
P2
2lð0Þj!Þ; ð3Þ

Similarly, the coefficient results Cn for n odd is obtained

C2lþ1 ¼ ð�1Þl
Xl

j¼0

2ð2l�2jþ1ÞCð3=2þ 2l

� jÞB2l�2jþ1=ð
ffiffiffiffi
p

p
P02
2lþ1ð0Þj!Þ; ð4Þ

where C is the gamma function, P2lð0Þ represents the Legendre
polynomials of order 2l, and P0

2lþ1ð0Þ represents the Legendre poly-
nomials’ differential of order 2lþ 1. Their values with argument 0
are shown in Appendix C. Parameter B is an intermediate value that
can be calculated for n both even and odd as

B2lþ1 ¼ B2l ¼
Xl

j¼0

ð�1Þls2l�2j=ðj!24 jðl� jÞ!Þ: ð5Þ

The detailed calculation procedure is given in Appendix D. To
validate the series expansion method, the incident zero-order
quasi-Bessel-Gauss beam is respectively calculated by exact solu-
tion using Eq. (1) and by the finite series expansion method for dif-
ferent beam widths. The results are shown in Figs. 2a–2c. The
calculation results were found to be nearly identical, which proves
the correctness of this method.

2.2. Acoustic scattering by sphere and acoustic radiation force

The scattering velocity potential produced by the sphere can be
expressed as:

/s ¼ /0e
�ixt

X1
n¼0

ð2nþ 1ÞinSnhð1Þ
n ðkrÞPnðcos hÞCnPnðcosbÞ; ð6Þ

where hð1Þ
n denotes the spherical Hankel function of first order. The

scattering coefficients Sn ¼ an þ ibn are determined by the boundary
condition at the surface of the sphere, and they are also relevant to
the material properties of the sphere and the fluid in which the
sphere is immersed. an and bn are the real and imaginary parts of
the scattering coefficients Sn for plane waves.The total velocity
potential distribution outside the sphere is regarded as a combina-
tion of the scattering and incident wave fields and is given by:

Fig. 1. Geometry of the problem.

Fig. 2a. Contrast of the incident zero-order quasi-Bessel-Gauss beam computed by
exact solution and finite series expansion as h ¼ p=2 and b ¼ p=2 with beam width
W0 ¼ 1.
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