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a b s t r a c t

The prediction of the elastic scattering by voids (and cracks) in materials is an important process in struc-
tural health monitoring, phononic crystals, metamaterials and non-destructive evaluation/imaging to
name a few examples. Earlier analytical theories and numerical computations considered the elastic scat-
tering by voids in plane waves of infinite extent. However, current research suggesting the use of
(limited-diffracting, accelerating and self-healing) Airy acoustical-sheet beams for non-destructive eval-
uation or imaging applications in elastic solids requires the development of an improved analytical for-
malism to predict the scattering efficiency used as a priori information in quantitative material
characterization. Based on the definition of the time-averaged scattered power flow density, an analytical
expression for the scattering efficiency of a cylindrical empty cavity (i.e., void) encased in an elastic med-
ium is derived for compressional and normally-polarized shear-wave Airy beams. The multipole expan-
sion method using cylindrical wave functions is utilized. Numerical computations for the scattering
energy efficiency factors for compressional and shear waves illustrate the analysis with particular
emphasis on the Airy beam parameters and the non-dimensional frequency, for various elastic materials
surrounding the cavity. The ratio of the compressional to the shear wave speed stimulates the generation
of elastic resonances, which are manifested as a series of peaks in the scattering efficiency plots. The pre-
sent analysis provides an improved method for the computations of the scattering energy efficiency fac-
tors using compressional and shear-wave Airy beams in elastic materials as opposed to plane waves of
infinite extent.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

The spectral analysis by modeling of the acoustic scattering
from voids and microcracks in materials [1] is an active area of
research in NDT&E applications for the estimation of the failure
prediction threshold in structural health monitoring. Applications
in geophysics and biomedical acoustics, where the characterization
of the medium around an inclusion and the inverse estimation of
the elastic parameters from scattering data provide assistance in
the diagnosis, would benefit from such numerical predictions. Such
computations are also relevant in emergent areas where the elastic
scattering data from fiber-reinforced materials [2] (used exten-
sively in the industry) and periodic structures such as metamateri-
als [3] are correlated with the results of analytical modeling.

In this process, the energy of the incident waves is scattered
from the embedded inclusion and its surrounding medium. The
description of this effect is formulated based on the extinction the-
orem (devised originally from the field of optics [4]), known also as
the ‘‘cross-section theorem” [5], where the scattering efficiency (or

cross-section [6,7]) of a target can be evaluated stemming from the
law of the conservation of energy. Thus, a useful methodology for
characterizing the scatterer can be developed based on calculating
the energy flux scattered by the inclusion (or void), and compare it
with that of the incident waves.

Standard methods have used the multipole expansion in cylin-
drical wave functions in cylindrical coordinates [8–13]. Neverthe-
less, such analyses have been mainly restricted to the case of
plane waves, where the incident wavefronts (i.e. iso-surfaces of
constant phase) are infinite parallel planes of constant amplitude
normal to the direction of wave propagation. In practical applica-
tions, however, a finite beam bounded in space is utilized. Recent
work using nonparaxial Gaussian ‘‘acoustical sheets” [14] (i.e.
finite beams in 2D) has been suggested for particle manipulation
in fluids. Nonetheless, the formalism is not applicable to a particle
embedded in an elastic matrix, because of the elastodynamic cou-
pling with the host medium that affects and alters the scattering
from the particle [15,16]. Acoustical sheets consist of a thin ‘‘slice”
of a confined beam where the field is distributed in the 2D cross-
sectional plane [17], with invariance along the z-direction
(Fig. 1). Thus, it is of some importance to extend the previous

http://dx.doi.org/10.1016/j.ultras.2017.06.010
0041-624X/� 2017 Elsevier B.V. All rights reserved.

E-mail address: F.G.Mitri@ieee.org

Ultrasonics 81 (2017) 100–106

Contents lists available at ScienceDirect

Ultrasonics

journal homepage: www.elsevier .com/ locate/ul t ras

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ultras.2017.06.010&domain=pdf
http://dx.doi.org/10.1016/j.ultras.2017.06.010
mailto:F.G.Mitri@ieee.org
http://dx.doi.org/10.1016/j.ultras.2017.06.010
http://www.sciencedirect.com/science/journal/0041624X
http://www.elsevier.com/locate/ultras


methods and devise an improved formalism applicable to ‘‘sheets”
in elastic materials, which are defined here as ‘‘elastic-sheets”.

In this work, in contrast to plane waves of infinite extent, non-
paraxial Airy elastic-sheet beams are suggested and examined
from the standpoint of elastic scattering theory by a circular cylin-
drical void encased in an elastic matrix. The scattering energy effi-
ciency is determined and evaluated numerically with particular
emphasis on the ratio of the compressional to the shear wave
speeds, which determine the property of the surrounding elastic
matrix material. The computations, which suggest the use of Airy
elastic sheet beams as potential candidates in contrast to plane
waves, may be relevant in various applied acoustics areas involving
NDE&T, biomedical imaging and geophysics applications to name a
few examples. Notice that Airy beams resist diffraction [18] and
have the ability to reform [19] after encountering a small obstacle,
as long as the whole beam is not blocked. Furthermore, the wave
propagation of nonparaxial Airy beams follows a parabolic (nonlin-
ear) trajectory curving through space [20], offering the possibility
of imaging around corners for the detection of defects and cracks
in materials.

These features of Airy beams provide the impetus here to inves-
tigate the scattering from an empty cavity (i.e. void) embedded in
an elastic matrix, encompassing the cases of incident compres-
sional (c) and shear (s) wave incidences, although a recent work
investigated the extinction and absorption efficiencies from a
fluid-filled viscous inclusion [21]. Such an analysis for the scatter-
ing of Airy elastic sheets by a cylindrical void seems to be non-
existent yet.

In this analysis, the formalism for the scattering efficiency is
derived based upon the multipole expansion method using cylin-
drical wave functions, and closed-form partial-wave series expan-
sions (known also as generalized Rayleigh series) in cylindrical
coordinates. Stemming from the equations of elastodynamics,
and the integration of the time-averaged scattered power flow
density [22] using the far-field scattering, the corresponding scat-
tering efficiencies (or cross-sections) for both the c and s waves are
obtained. Numerical computations illustrate the analysis for a 2D
Airy beam with arbitrary incidence and particular emphasis is
given on the beam parameters and shift from the center of the cir-
cular cylindrical inclusion. These effects predicted in 2D will con-
stitute the basis for future research dealing with the 3D case, and
this analysis should assist along that direction of research.

2. Method

2.1. Elastic wave scattering

The analysis is started from the basic equation of motion for the
particle displacement vector in an elastic medium u expressed as
[23,24],

ðkþ 2lÞrðr � uÞ � lr� ðr� uÞ ¼ q@2u=@t2; ð1Þ
where k and l are the Lamé coefficients of the homogeneous isotro-
pic elastic matrix medium and q its density.

The displacement vector u is expressed as the sum of the gradi-
ent of a scalar potentialU and the curl of a solenoidal vector poten-
tial W (satisfying the gauge invariance condition $ �W ¼ 0) as,

u ¼ rUþr�W: ð2Þ
The displacement equations are satisfied if the potentials U and W
satisfy the Helmholtz equations for the solid medium,

ðr2 þ k2c ÞU ¼ 0; ð3Þ

ðr2 þ k2s ÞW ¼ 0; ð4Þ

where kc ¼ x=cc ¼ x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðkþ 2lÞ=qp

; and ks ¼ x=cs ¼ x=
ffiffiffiffiffiffiffiffiffi
l=q

p
;

refer to the longitudinal and transverse wave numbers in the elastic
matrix, respectively.

It follows from symmetry considerations that the vector poten-
tialWðwr ¼ 0;wh ¼ 0;wz–0Þ has only one nonzero component along
the z-direction [25].

2.2. Compressional Airy beam incidence

Consider a monochromatic Airy beam composed of compres-
sional waves propagating in an elastic medium with arbitrary inci-
dence with respect to the center of a void cylindrical inclusion
(Fig. 1). Using the separation of variables (non-singular) solution
of the Helmholtz equation, the incident displacement potential
field for the compressional wave is expressed in cylindrical coordi-
nates as [26–28],

UðcÞ
incðr; hÞ ¼ /0

Xþ1

n¼�1
bðcÞ
n JnðkcrÞeinh; ð5Þ

where /0 is the amplitude, bðcÞ
n are the beam-shape coefficients

(BSCs) that characterize the incident Airy beam, and Jnð�Þ is the
cylindrical Bessel function of the first kind. A time-harmonic varia-
tion in the form of e�ixt is assumed, but suppressed for convenience
from Eq. (5) (and the subsequent ones) since the space-dependent
field is only considered. Based upon the analysis introduced in the
context of electromagnetic theory [29] and extended in the context
of particle manipulation using Airy acoustical sheets in fluids [17],
the BSCs corresponding to the elastic compressional beam can be
expressed as,

bðcÞ
n

���
Airy

¼ in
kcy
2p

� �

�
Z þ1

�1
eða�ikcy qÞ3=3eikcðx0

ffiffiffiffiffiffiffiffi
1�q2

p
þy0qÞe�in sin�1ðqÞdq; ð6Þ

where kcy is a non-dimensional transverse scaling factor, and a > 0
is a non-dimensional parameter that determines the strength of the
incident field [17,29]. The variables x0 and y0 are the coordinates of
the Airy beam in the transverse plane, such that the point (x0, y0) =
(0, 0) corresponds to the center of the beam. Eq. (6) can be evalu-
ated using a single standard numerical integration procedure.

Fig. 1. Graphical representation of an Airy elastic-sheet beam incident upon a
circular cylindrical cavity of radius a embedded in an elastic matrix. The beam
propagates with an arbitrary direction with respect to the center of the cavity with
invariance along the z-axis (perpendicular to the plane of the figure).
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