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An analytical theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous
plate material on the Lamb waves near the S; zero group velocity point is developed. The theory predicts
that the main effect of the hysteretic quadratic nonlinearity consists in the modification of the frequency
and the induced absorption of the Lamb modes. The effects of the nonlinear self-action in the propagating
and standing Lamb waves are expected to be, respectively, nearly twice and three times stronger than
those in the plane propagating acoustic waves. The theory is restricted to the simplest hysteretic nonlin-
earity, which is influencing only one of the Lamé moduli of the materials. However, possible extensions of
the theory to the cases of more general hysteretic nonlinearities are discussed as well as the perspectives
of its experimental testing. Applications include nondestructive evaluation of micro-inhomogeneous and
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1. Introduction

Lamb waves are the acoustic eigen modes of a mechanical plate
[1,2] and, thus, it is natural to evaluate their propagation for deter-
mining the acoustic parameters of a material composing the plate,
such as linear acoustic waves velocities and absorption, as well as
the nonlinear acoustic parameters. In particular the level of the
nonlinear phenomena in Lamb waves propagation and interactions
can be a sensitive indicator for the level of material degradation
and damage caused by various types of fatigue in the plate [3-7].
Among the nonlinear phenomena, taking place in propagation of
the Lamb waves, which could be potentially evaluated for charac-
terization of the material, the dominant attention of the research-
ers was attracted until now to the processes of the harmonics
generation in the initially monochromatic propagating Lamb
waves [3-14]. The conditions for the efficient generation of the
harmonics such as their phase synchronism with the fundamental
wave, requiring the matching of their phase velocities to the veloc-
ity of the fundamental wave, as well as the “optimization” of the
overlap of their in-depth spatial structures with that of the nonlin-
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ear stresses induced by the fundamental wave, are currently well
understood [8-12] and successfully applied for sensitive testing
of material nonlinearity [3-7,10,12-14|. However, the Lamb waves
are dispersive and the experimental realization of the efficient
interaction between the harmonics in most of the cases requires
a careful choice of a fundamental Lamb mode and its frequency
for each particular material in order to have synchronism with a
generated higher harmonic belonging to a different Lamb mode
[3,6-11]. Because the different order Lamb modes have different
in-depth spatial structures, the in-depth matching between the
nonlinear stresses and the harmonic modes, that should avoid their
orthogonality [9,12] and provide efficient energy transfer from the
fundamental wave to one of its harmonics, is never perfect. The
most studied in the experiments with nonlinear Lamb waves pro-
cess of the second harmonic generation has an additional draw-
back: second harmonic is not generated by the anti-symmetrical
Lamb modes [8,9,12]. For example, in the plates with elastic non-
linearity the propagation of flexural waves is accompanied by the
generation of the odd harmonics only [12,15-17], while the cubic
elastic nonlinearity of the material, causing the generation of the
harmonics in the anti-symmetrical Lamb waves, is theoretically
expected to be, in the same material, weaker than the quadratic
nonlinearity causing the second harmonic generation in symmetric
Lamb waves [18,19,12].
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Recently it has been proposed [20] that the dominant source of
the nonlinear transformation of flexural waves in plates in some
cases could be not the elastic nonlinearities (both physical and
kinematical/geometrical [18,19,21]) but the hysteretic nonlineari-
ties, essential for a large spectrum of the materials from single-
crystals with dislocations [22-25] to polycrystalline/microinhomo
geous materials and cracked media [26-35]. The lowest order hys-
teretic nonlinearity of a material is the hysteretic quadratic nonlin-
earity (HQNL), which contributes to the nonlinear stresses which
are quadratic in the acoustic strain amplitude, i.e., similarly to elas-
tic quadratic nonlinearity, but has, otherwise, the symmetry prop-
erties of the odd nonlinearity [21,32,36,37]. For example, it
initiates the generation of odd harmonics only, both in propagation
of compression/dilatation (c/d) and shear waves [32,36,37]. The
goal of our research, which results are presented below, was to
provide the simplest extension of the theory of flexural waves in
the media with HQNL to the case of an arbitrary, in terms of its
symmetry and order, Lamb waves. From the view point of a possi-
ble role of the hysteretic nonlinearities of material in the propaga-
tion of the Lamb waves the most important is the fact that HQNL
initiates self-action of the monochromatic waves already in a sin-
gle nonlinear scattering process, while the elastic quadratic nonlin-
earity does not [32,36,37,20]. While the most important outcome
of a single nonlinear scattering caused by the elastic quadratic non-
linearity is the generation of the second harmonic, for the HQNL
these are slowing down of the propagation velocity and induced
nonlinear absorption of the fundamental wave [32,36,37,20]. The
self-action of the Lamb wave caused by the HQNL is “automati-
cally” synchronous and “matched” in depth of the plate. The non-
linear stresses at the fundamental frequency are propagating with
the same phase velocities as the fundamental wave and their spa-
tial in-depth structure nearly perfectly overlaps with that of the
fundamental wave. The nonlinear stresses, which are in phase with
the fundamental wave cause its deceleration, while out-of-phase
nonlinear stresses cause its nonlinear absorption. Only small part
of the hysteretic nonlinear stress is generating higher harmonics
[36,38]. Another difference from the elastic quadratic nonlinearity
is that even in isotropic media the self-action through HQNL exhi-
bit both compression/dilatation (longitudinal) and shear (trans-
verse) partial components of the Lamb wave, while elastic
quadratic nonlinearity induces generation of the second harmonic
by the c/d partial wave only. Shear partial wave in the media with
elastic quadratic nonlinearity does not generate shear second har-
monic itself [18,39,40], shear second harmonic appears only as a
result of the c/d second harmonic mode conversion in reflection
from the plate surfaces. Finally, the nonlinear self-action of the
Lamb waves, caused by the hysteretic quadratic nonlinearity, takes
place both for the symmetrical and for anti-symmetrical modes.

2. Lamb waves in isotropic materials with hysteretic
nonlinearity

As a preliminary for the analysis of Lamb waves in materials
possessing HQNL we present necessary information on a general
approach for the description of the acoustic waves in such materi-
als. The equation of motion in nonlinear media has the form

Pu D,
P =g (5 )
where p, denotes the density of the material and u; denotes the i-th
component of the particle displacement vector. We will use the
classical presentation for the linear elastic part oiLj of the strain ten-
sor [2] and we assume that in the nonlinear part ag-’L of the stress

tensor the hysteretic quadratic terms dominate over the traditional
elastic quadratic nonlinearity [21,26,30-34]. So, we consider that

o)t = o/®"". The equation of motion can then be presented in the
form
& N 1~ oafd"
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where c; 1 denote the c/d and shear linear acoustic wave velocities

respectively, e; are the unit vectors of the rectangular coordinate
frame and F; are the components of nonlinear body forces. In the
frame of Eq. (1) we are applying traditional approach to analyze
the interaction of the acoustic waves [9,18,19,21] based on the
assumption that the acoustic waves are of finite but small ampli-
tude, ensuring that the nonlinear terms in the right-hand-side (r.
h.s.) of Eq. (1) are much smaller than the linear terms in its left-
hand-side (L.h.s.). In this case the method of the successive approx-
imations can be applied to search the solutions of Eq. (1). It is

assumed that the solution in the first approximation, u, ie., the
solution to the linearized Eq. (1), is known. In the second approxi-
mation the solution of Eq. (1) is assumed to have the form

U= ﬂ+ﬂs, where ﬂs is the acoustic field scattered/generated due

to the nonlinear term in the r.h.s. It is assumed that 175 is so small
that it does not contribute to the r.h.s. in the second approximation.

So only u should be substituted in the r.h.s. in the second approxi-

mation. However u, contributes to the left-hand-side (L.h.s.) of Eq.
(1) and, consequently, we derive the inhomogeneous wave equation
with known r.h.s., which is, in fact, the nonlinear source of the gen-
erated/scattered wave. This mathematical formalism can be applied
to the analysis of the acoustic waves generated due to the acoustic

nonlinearity only by the primary nonlinear waves u, and does not
take into account neither subsequent interaction of the generated

waves u;, with the primary waves nor nonlinear interaction

between the new nonlinearly generated waves u;. It is common
to say that the acoustic field can be found by this approach after
a single nonlinear scattering (single scattering approximation). For
example, in the case of the elastic quadratic nonlinearity a single
nonlinear scattering of the initially monochromatic compression/
dilatation wave at cyclic frequency w leads to the generation of
its second harmonic at frequency 2. Thus the scattered field is dis-
tinct from the primary field in its spectral content. In the case of the
HQNL, the result of a single nonlinear scattering of the same wave is
drastically different. The scattered field contains all odd harmonics
of the primary/fundamental frequency and a component at the fun-
damental frequency itself [21,36,38,41]. Moreover, the acoustic
field scattered by HQNL at the fundamental frequency dominates
over the field of all higher harmonics [36,38]. Thus, the main result
of a single scattering in the case of HQNL is the modification of the
primary monochromatic acoustic field, i.e., the self-action of the pri-
mary field. This self-action can be physically interpreted in terms of
the dependence of the velocity and attenuation (or the real and
imaginary part of the elastic modulus, respectively) on the wave
amplitude, which is self-induced by the primary wave [21,36,37].
Of significant importance is that this description of the acoustic
field self-action in terms of the amplitude-dependent acoustic
material parameters is valid also in case of multiple nonlinear scat-
terings if the other nonlinear processes contributing to single non-
linear scattering are neglected. As a consequence the equations
describing the evolution of the acoustic field caused by its self-
action can be derived and the variation of the acoustic field with
time can be predicted starting from its initial finite-amplitude state
and finishing by its complete disappearance caused by the nonlin-
ear absorption [20,36,37]. In the following we will demonstrate
how this approach, described above for the case of plane compres-
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