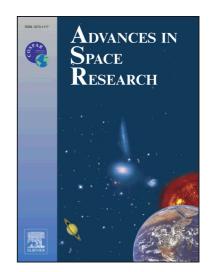
Accepted Manuscript

Seasonal crustal vertical deformation induced by environmental mass loading in mainland China derived from GPS, GRACE and surface loading models

Yanchao Gu, Linguo Yuan, Dongming Fan, Wei You, Yong Su


PII: S0273-1177(16)30521-X

DOI: http://dx.doi.org/10.1016/j.asr.2016.09.008

Reference: JASR 12904

To appear in: Advances in Space Research

Received Date: 13 June 2016 Revised Date: 18 August 2016 Accepted Date: 8 September 2016

Please cite this article as: Gu, Y., Yuan, L., Fan, D., You, W., Su, Y., Seasonal crustal vertical deformation induced by environmental mass loading in mainland China derived from GPS, GRACE and surface loading models, *Advances in Space Research* (2016), doi: http://dx.doi.org/10.1016/j.asr.2016.09.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Seasonal crustal vertical deformation induced by environmental mass loading in mainland China derived from GPS, GRACE and surface loading models

Yanchao Gu^{a,b}, Linguo Yuan^{a,b,*}, Dongming Fan^{a,b}, Wei You^{a,b}, Yong Su^c

Abstract

Obvious seasonal crustal vertical deformation largely related to mass redistribution on the Earth's surface can be captured by Gravity Recovery and Climate Experiment (GRACE), simulated by surface loading models (SLMs), and recorded by continuous Global Positioning System (GPS). Vertical deformation time series at 224 GPS stations with more than four-year continuous observations are compared with time series obtained by GRACE and SLMs with the aim of investigating the consistency of the seasonal crustal vertical deformation obtained by different techniques in mainland China. Results of these techniques show obvious seasonal vertical deformation with high consistency at almost all stations. The GPS-derived seasonal vertical deformation can be explained, to some content, by the environmental mass redistribution effect represented by GRACE and SLMs. Though the mean weighted root mean square reduction is 34% when remove the environmental mass loading from the monthly GPS height time series (up to 47% for the mean annual signals), systematic signals are still evident in the residual time series. The systematic residuals are probably attributed to GPS related errors, such

^aFaculty of Geoscience and Environment Engineering, Southwest Jiaotong University, Chengdu 610031, China

^bState-province Joint Engineering Laboratory of Spatial Information Technology of High-speed Rail Safety, Chengdu 610031, China

^cSchool of Civil Engineering and Architecture, Southwest Petroleum University, Chengdu 610031, China

^{*}Corresponding author

Email addresses: guyanchao@my.swjtu.edu.cn (Yanchao Gu), lgyuan@swjtu.edu.cn (Linguo Yuan), dmfan@swjtu.cn (Dongming Fan), youwei1985@foxmail.com (Wei You), suyongme@foxmail.com (Yong Su)

Download English Version:

https://daneshyari.com/en/article/5486089

Download Persian Version:

https://daneshyari.com/article/5486089

Daneshyari.com