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a b s t r a c t 

The scalar mode temperature fluctuations of the cosmic microwave background has been derived in a 

spatially closed universe from two different methods. First, by following the photon trajectory after the 

last scattering and then from the Boltzmann equation in a closed background and the line of sight inte- 

gral method. An analytic expression for the temperature multipole coefficient has been extracted at the 

hydrodynamical limit, where we have considered some tolerable approximations. By considering a real- 

istic set of cosmological parameters taken from a fit to data from Planck, the TT power spectrum in the 

scalar mode for the closed universe has been compared with numerical one by using the CAMB code and 

also latest observational data. The analytic result agrees with the numerical one on almost all scales. The 

peak positions are in very good agreement with numerical result while the peak heights agree with that 

to within 10% due to the approximations have been considered for this derivation. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The cosmological parameters of the standard big bang model 

can be determined or considerably constrained by comparing the 

predictions of theoretical cosmological models with the data on 

the CMB by observation, such as WMAP and Planck. The theoreti- 

cal derivation of the spectra of the CMB temperature anisotropies 

and polarizations has been archived by sophisticated numerical 

calculation codes such as CAMB [1–3] and CMBFAST [4] that give 

the spectra C X X ′ ,� which involves several cosmological parameters. 

However, analytical studies give us a great insight into the problem 

for understanding how various underlying physical effects give rise 

to specific observational behavior. In particular, the analytical stud- 

ies are helpful in revealing the explicit dependencies of the CMB 

spectra on cosmological parameters and possible degeneracies be- 

tween them. 

There are several works in the field that extracted an analyti- 

cal expression for the C X X ′ ,� in a flat universe. In Refs. [5–11] you 

can find all analytical spectra by considering the tensor pertur- 

bation as a source. Refs. [12–15] gave the analytic calculation of 

the scalar mode temperature power spectrum in Newtonian gauge 

while Refs. [16,17] gave the scalar mode analytic power spectra in 

synchronous gauge. Ref. [18] also gave a unifying framework for all 
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spectra in both tensor and scalar modes. However, the analysis is 

still incomplete by lacking analytic expressions for the closed and 

open geometry. viewing these, we are going to perform a detailed 

analytic calculation of scalar mode (in synchronous gauge) tem- 

perature power spectrum C S 
T T,� 

in a spatially closed background. 

We will apply some of the results and techniques developed in 

the study of the cosmic microwave background anisotropies in a 

flat spatial geometry to the closed case and compare the conse- 

quences with that of numerical calculation and latest observational 

data. By applying a series of tolerable approximations that lead to 

a simple analytic formula for the CMB power spectrum, we provide 

transparent information about the dependencies of the CMB spec- 

tra on cosmological parameters. We extract an analytic formula for 

the closed universe temperature fluctuations by imposing the ef- 

fect of curvature into the Boltzmann equation for the photons and 

using the line of sight method without using any recursion rela- 

tions which used by others for numerical calculations. We derive 

this expression from a more geometrical approach, by following 

the photon trajectory from the last scattering surface until now in 

a spatially closed background. We also calculate the multipole co- 

efficient analytically , in hydrodynamic limit and compare the result 

with those of a flat universe and observational data. 

In the following section, we give a brief overview of the per- 

turbation theory in a spatially closed universe and its applications 

in the present paper. In Section 3 , we extract the temperature fluc- 

tuations by following the photon trajectory from the last scatter- 

ing surface in the spatially closed background. In Section 4 , we in- 

troduce the Boltzmann equation for the photons in the spatially 

http://dx.doi.org/10.1016/j.astropartphys.2017.08.003 

0927-6505/© 2017 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.astropartphys.2017.08.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/astropartphys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.astropartphys.2017.08.003&domain=pdf
mailto:pedram.niazi@modares.ac.ir
mailto:ahabbasi@modares.ac.ir
http://dx.doi.org/10.1016/j.astropartphys.2017.08.003


P. Niazy, A.H. Abbassi / Astroparticle Physics 94 (2017) 44–55 45 

closed background and extract the temperature fluctuations by us- 

ing the line of sight integral method. The approach presented here 

for temperature fluctuations can also be used for extracting the po- 

larization multipoles C S 
T E,� 

and C S 
E E ,� 

from the Boltzmann equation. 

In Section 5 , at first, we introduce a general formula for the tem- 

perature multipole coefficient in a closed background and then by 

considering that the evolution of cosmological perturbations is pri- 

marily hydrodynamics, among some other appropriate approxima- 

tions, we extract an analytic formula for the temperature power 

spectrum C S 
T T,� 

. In Section 6 , we plot the TT power spectrum curve 

extracted in Section 5 using a realistic set of cosmological param- 

eters and compare it with the numerical one by CAMB and also 

the curve from latest observational data (Planck 2015). Several in- 

teresting properties of CMB anisotropies are revealed in analytic 

expression along with the power spectrum dependence on cosmo- 

logical parameters. We conclude the article by a brief review that 

remarks the main outcomes of this paper. 

2. The perturbation theory in a spatially closed background; a 

short review 

The theory of the linear perturbations is an important part of 

the modern cosmology which explains CMB anisotropies and the 

origin of structure formation. There is enough references for this 

theory in a spatially flat universe and has been investigated for a 

spatially closed universe recently [19] . 

The perturbed metric is: 

g μν = g μν + h μν (1) 

where g μν and h μν are the unperturbed metric and the first order 

perturbation, respectively. Note that g μν is the FLRW metric which 

in the comoving spherical polar coordinates can be written as 

g 00 = −1 

g rr = 

a 2 (t) 

1 − Kr 2 
g θθ = a 2 (t) r 2 g ϕϕ = a 2 (t) r 2 sin 

2 θ

Perturbation in the metric leads to perturbation in the Ricci and 

energy-momentum tensor. We can decompose the metric pertur- 

bation and energy-momentum tensors into the scalar, vector and 

tensor modes from their transformation properties under spatial 

rotations and derive the field equations accordingly [19] . 

Decomposition into the scalar, vector and tensor modes of the 

metric perturbation and energy-momentum tensor would be as 

follows: 

h 00 = −E 

h i 0 = a (∇ i F + G i ) 

h i j = a 2 (A ̃

 g i j + H i j B + ∇ i C j + ∇ j C i + D i j ) 

δT 00 = −ρ h 00 + δρ

δT i 0 = p h i 0 − ( ρ + p )(∇ i δu + δu 

V 
i ) 

δT i j = p h i j + a 2 ( ̃  g i j δp + H i j �
S + ∇ i �

V 
j + ∇ j �

V 
i + �T 

i j ) . 

where ∇ i is the covariant derivative with respect to the spatial un- 

perturbed metric ̃  g i j (= a −2 g i j ) and H i j = ∇ i ∇ j is the covariant Hes- 

sian operator . All the perturbations A , B , E , F , C i , G i and D ij are 

functions of x and t which satisfy 

∇ 

i C i = ∇ 

i G i = 0 ˜ g i j D i j = 0 ∇ 

i D i j = 0 D i j = D ji 

On the other hand, all above perturbative quantities have been 

considered as random fields on S 3 ( α) (a 3-sphere of radius α), 

because they are defined on a homogeneous and isotropic space 

[20,21] . So they can be described by their Fourier transforma- 

tion. There are many different Fourier transform convention, how- 

ever here we are going to expand each mode of the perturbation 

fields in terms of the corresponding eigenfunctions of the Laplace–

Beltrami operator. This operator reduces to the ordinary Laplacian 

in a flat background. In pseudo-spherical coordinates with the line 

element 

ds 2 = α2 ( d χ2 + sin 

2 χ d θ2 + sin 

2 χ sin 

2 θ d ϕ 

2 ) (2) 

one gets the following eigenvalues and eigenfunctions for the 

Laplace–Beltrami operator: 

∇ 

2 � = −k 2 n � ∇ 

2 = ̃

 g i j H i j = ̃

 g i j ∇ i ∇ j 

� = Y n�m 

(χ, θ, ϕ) = �n� (χ ) Y �m 

(θ, ϕ) 

k 2 n = 

n 

2 − 1 

α2 
n = 1 , 2 , · · ·

where �n � ( χ ) is the hyperspherical Bessel function satisfying the 

following equation 

d 

2 �n� (χ ) 

d χ2 
+ 2 cot χ

d�n� (χ ) 

d χ

+ 

[
(n 

2 − 1) − � (� + 1) 

sin 

2 χ

]
�n� (χ ) = 0 (3) 

In a flat background, the hyperspherical Bessel function reduces to 

the ordinary spherical Bessel function j � ( νχ ). Also we introduce 

the generalized wave number in closed space q n as 

q n = 

√ 

k 2 n + 

1 

α2 
= 

n 

α

We can expand the scalar perturbative quantity A ( x , t) in terms of 

Laplace–Beltrami operator eigenfunctions as below: 

A ( x , t) = 

∑ 

n�m 

A n�m 

(t) Y n�m 

(χ, θ, ϕ) (4) 

This is the initial conditions that depend on the direction, not the 

perturbation itself, so a perturbation can be shown by a time- 

dependent normal mode A n ( t ) with an overall normalization fac- 

tor αlm 

. A n � m 

( t ) just like A ( x , t) is a scalar random field and one 

of the simplest statistics for it is the two-point covariant function 

denoted by 〈 A n�m 

A 

∗
n ′ � ′ m 

′ 〉 . Here 〈 〉 means the ensemble average 

which equals the spatial average according to the ergodic theorem. 

The homogeneity and isotropy imply that 

〈 α�m 

α∗
� ′ m 

′ 〉 = δ�� ′ δmm 

′ 〈 A n (t) A 

∗
n ′ (t) 〉 = A 

2 
n (t) δnn ′ 

so the two-point covariant function of A n � m 

( t ) is 

〈 A n�m 

A 

∗
n ′ � ′ m 

′ 〉 = 〈 α�m 

A n (t) α∗
�m 

A 

∗
n ′ (t) 〉 

= 〈 α�m 

α∗
� ′ m 

′ 〉〈 A n (t) A 

∗
n ′ (t) 〉 

= A 

2 
n (t) δnn ′ δ�� ′ δmm 

′ 

and for any scalar random field A , we will have 

A ( x , t) = 

∑ 

n�m 

α�m 

A n (t) Y n�m 

(χ, θ, ϕ) (5) 

Also, we can decompose an arbitrary tensor random field using the 

scalar eigenvalues of the Laplace–Beltrami operator and their co- 

variant derivatives as follows 

A 

i j ( x , t) = 

∑ 

n�m 

α�m 

[ 
1 

3 

A nT (t) ̃  g i j Y nlm 

(χ, θ, ϕ) 

+ A nT L (t) 
(
k −2 

n H 

i j Y nlm 

(χ, θ, ϕ) 
)] 

, (6) 

where A nT ( t ) and A nTL ( t ) are the trace and traceless parts of the 

tensor A 

ij respectively [22,23] . 
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