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a b s t r a c t 

Source detection in counting type experiments such as Cherenkov telescopes often involves the applica- 

tion of the classical Eq. (17) from the paper of Li & Ma (1983) to discrete on- and off-source regions. The 

on-source region is typically a circular area with radius θ in which the signal is expected to appear with 

the shape of the instrument point spread function (PSF). This paper addresses the question of what is the 

θ that maximises the probability of detection for a given PSF width and background event density. In the 

high count number limit and assuming a Gaussian PSF profile, the optimum is found to be at ζ 2 
∞ 

≈ 2 . 51 

times the squared PSF width σ 2 
PSF39 . While this number is shown to be a good choice in many cases, a 

dynamic formula for cases of lower count numbers, which favour larger on-source regions, is given. The 

recipe to get to this parametrisation can also be applied to cases with a non-Gaussian PSF. This result can 

standardise and simplify analysis procedures, reduce trials and eliminate the need for experience-based 

ad hoc cut definitions or expensive case-by-case Monte Carlo simulations. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Classical on-off detection techniques are still widely applied 

for ground-based gamma-ray observatories like H.E.S.S., MAGIC or 

VERITAS. In this approach, the event number in a signal (“on- 

source”) region is statistically compared to that of an assumedly 

source-free background (“off-source”) region. The size of the sig- 

nal region is defined through a so-called θ2 -cut, with θ being 

the opening angle between reconstructed gamma-ray direction and 

source position. Taking into account the instrument point spread 

function (PSF), the cut is usually either set to a canonical value of 

the order of the 68 % containment PSF radius (e.g. in VERITAS [1] ), 

or a canonical value of a fixed efficiency cut (75 % in MAGIC [2] ) 

or optimised case-by-case using Monte Carlo (MC) simulations (in 

H.E.S.S. [3] ). A possible source detection is evaluated using the for- 

mula introduced in Eq. (17) of the famous Li & Ma paper [4] . 

Although an ad hoc, experience-based choice or a full MC op- 

timisation of the θ2 problem can lead to good results, this paper 

argues for a simple mathematical solution, which is much easier 

and more flexible to apply without computing effort s, and at full 

transparency of procedures and trials. 

The work in this paper focuses on point-like sources (or sources 

with known extension). It neglects the aspects of systematic un- 
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certainties and Poissonian count numbers, which require other or 

additional constraints that can easily be adopted as needed. 

2. Nomenclature 

The main parameters that have influence on the number of 

events in the on- and off-regions for a given θ2 -cut are the 

background event density n , the number of photons provided by 

the source N src , and the gamma-ray point spread function, which 

in the Gaussian approximation is determined by the parameter 

σ PSF39 . This Gaussian sigma in two dimensions contains about 39 % 

of the signal events. 1 

In case of a source with known extension, σ PSF39 can simply 

be replaced by the source size σ SRC39 . If the PSF (or source exten- 

sion) is energy dependent, an effective PSF for the considered en- 

ergy range has to be computed. For spectral studies, each energy 

bin might have its own σ PSF39 , in which case the optimal sensitiv- 

ity requires one θ2 -cut per energy bin. The following calculations 

can thus either be appled to an integral signal or each energy bin 

of a spectral study separately. 

The calculations are simplified considerably defining 

ζ = θ/σPSF39 

˜ n bkg = nπσ 2 
PSF39 (1) 

1 see Appendix A for how to derive it from a 68 % containment radius and more 

details on the 2D Gaussian calculus used in this paper. 
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Table 1 

List of precise numerical con- 

stants presented in this paper. 

Variable Value 

ζ 2 
∞ 2 .51286242 

ζ∞ 1 .58520106 

ζ∞ , 68 % 1 .04621793 

p 0 160 .607603 

p 1 4 .28324658 

p 2 0 .0789513156 

with ζ being the PSF-scaled θ and ˜ n bkg the number of background 

events within a circle of radius σ PSF39 . In this case, the 2D Gaus- 

sian signal distribution can be expressed as 

dN 

dζ 2 
= 

N src 

2 

exp (−ζ 2 / 2) . (2) 

Locally around the source (within a few σ PSF39 ), the background 

of an instrument with a field of view � σ PSF39 is always well- 

described by an isotropic background density, which can be ex- 

tracted a-priori from an off-source θ2 (or ζ 2 ) histogram or skymap. 

So the expected numbers of excess events and on- and off-events 

for a given cut in ζ 2 amount to 

N ex = N src (1 − exp (−ζ 2 / 2)) 

N off = 

˜ n bkg ζ
2 

N on = N ex + N off . (3) 

3. Simple case 

An important number can be derived considering the simplified 

significance 

S simple (N ex , N off ) = 

N ex √ 

2 N off 

, (4) 

which is Eq. (9) from ref. [4] assuming α = 1 and N on ≈ N off for 

the denominator. In this case, applying Eq. (3) leads to 

S simple (ζ
2 , N src , ̃  n bkg ) = 

N src √ 

2 ̃

 n bkg 

1 − exp (−ζ 2 / 2) √ 

ζ 2 
. (5) 

The shape of this function in dependence of the cut value ζ 2 is 

shown Fig. 1 (top left). It has a maximum whose position is invari- 

ant against background density and signal strength, and which can 

analytically be determined to be 

ζ 2 
∞ 

= −2W −1 

(
1 

2 

√ 

e 

)
− 1 ≈ 2 . 51 (6) 

where W −1 (x ) is the Lambert-W function. A more precise value of 

ζ 2 ∞ 

is shown in Table 1 . 

4. Li & Ma case 

The Li & Ma significance depends on the background density 

and the signal strength and is therefore slightly more difficult to 

evaluate. As can be seen in Fig. 1 (top left), it generally needs a 

slightly higher number of source events to get to a given signifi- 

cance value, and favours a somewhat larger signal region cut. 

The complexity can however be reduced if one considers the 

fact that for a source detection, only a signal strength N src,5 is of 

interest that can just actually lead to a significant detection (typi- 

cally the canonical 5 σ ). Therefore, the calculation of this optimum 

for a given background density can be done in two dimensions: 

The maximum of S LiMa ( ζ
2 ) is determined numerically for a given 

˜ n bkg and N src , and the latter is increased until S LiMa = 5 , resulting 

both in N src, 5 and its respective ζ 2 
opt . 

Fig. 1 (middle left) shows the dependence of the optimal cut 

on the background density. Clearly, in the highly Gaussian regime 

( ̃  n bkg > 100 ), the optimum cut value approaches ζ 2 ∞ 

(therefore the 

index “∞ ”), but cases of low count numbers favour a somewhat 

larger cut. This in reverse is equivalent to the concept outlined 

in ref. [3] , namely that weak sources should be analysed with 

tighter cuts (because weak sources require large datasets, i.e. high 

background number) and stronger sources with looser cuts. It has 

to be noted that the Li & Ma formula is not valid in the very 

low-count Poissonian regime, roughly marked by the line labeled 

“N off > 5”. 

The signal event efficiency implied by the cut is plotted in 

Fig. 2 . In the high count number limit an efficiency of 71.5 % is 

approached (proving the 75 % in MAGIC ref. [2] likely to be a fair 

compromise in many cases). 

Fig. 1 (bottom left) shows that if the dynamic adjustment of the 

cut with background density is replaced by a constant cut, a signif- 

icance loss of the order of 10 % can be expected in the low count 

number case. This is equivalent to a 10 % loss of sensitivity or a 

20 % increase in required observation time. The dashed and dash- 

dotted curves furthermore show that if a canonical or weakly mo- 

tivated constant cut radius is more than a factor of 2 away from 

ζ∞ 

, the sensitivity can even be degraded by a factor of 2 or more. 

In cases where different amounts of on- and off-exposures are 

available, the Li & Ma formula offers the application of the parame- 

ter α, which is the exposure ratio between the two. Typically, more 

off- than on-data is available, and α is smaller than 1. The dashed- 

dotted curve in Fig. 1 (middle left) shows that the ζ 2 
opt curve is 

almost unaltered if the background density is scaled to ˜ n bkg /α. 

For simplicity of application, the curve in Fig. 1 (top left) can 

be parametrised with an analytical function of the form 

ζ 2 
opt ( ̃  n bkg , α) = ζ 2 

∞ 

− p 0 ln [1 − exp (−p 1 ( ̃  n bkg /α) p 2 )] (7) 

The result is shown as a green dotted line in the figure, and the 

according parameters p n are listed in Table 1 . 

5. Non-Gaussian point spread functions 

Although the point spread functions of instruments can usually 

be approximated by a Gaussian distribution to some level, the ex- 

act distributions are sometimes more complex. Misreconstructed 

events can lead to non-Gaussian tails of the PSF. In order to test 

the robustness of the above results in these cases, the calculations 

are repeated using a so-called King profile 

dN 

dζ ′ 2 = 

N src 

2 

(1 − 1 /γ ) 

(
1 + 

ζ ′ 2 
2 γ

)−γ

. (8) 

This distribution has a tail that is small for large γ and gets longer 

for γ → 1. ζ ′ is defined as θ / σ King , and is related to ζ like 

ζ ′ 2 = ζ 2 × 2 γ
[ 
(1 − 0 . 39347) 

1 
1 −γ − 1 

] 
. (9) 

The number of excess events in Eq. (3) now changes to 

N ex = N src 

[ 

1 −
(

1 + 

ζ ′ 2 
2 γ

)1 −γ
] 

(10) 

In this case, the maximum of the corresponding significance func- 

tion S ( ζ ) depends on γ and cannot be derived analytically, even 

though the shape is qualitatively similar to the Gaussian case (see 

Fig. 1 , top right, where a PSF with γ = 2 is taken as an example). 

The optimum cut in the case of S simple , however, is still invariant 

against ˜ n bkg , and lies somewhat lower (if calculated w.r.t. σ PSF39 , 

i.e. converting ζ ′ to ζ ). 

In the Li & Ma case, the function of ζ 2 
opt vs. ˜ n bkg is differ- 

ent from the Gaussian PSF case, but can still be fitted with the 
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