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a b s t r a c t 

The standard method for estimating the statistical significance of a gamma-ray source detection is that 

introduced by Li & Ma (1983), Eq. (17). In observing sources with time-dependent light curves, one can 

improve on this method by including approximate a priori knowledge of the source temporal behavior. 

A maximum-likelihood-based approach is suggested that provides an improvement in sensitivity with 

respect to the Li & Ma technique. The method is demonstrated by applying it to Monte Carlo simula- 

tions of gamma-ray burst observations with parameters chosen to reproduce the performance of current 

generation imaging air Cherenkov telescopes (IACTs). One particular example of a simulated burst ob- 

servation near the current-generation IACT detection threshold results in a sensitivity improvement of 

approximately 25% . It is also shown that this method can work with highly variable light curves with- 

out much computational complexity, and that the sensitivity gain is robust against uncertainties in the a 

priori -defined light curve. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

In high-energy astrophysics, measurements are typically per- 

formed in a background-dominated regime [8] . Thus, statistical 

tools for analysis must be employed to estimate the statistical sig- 

nificance associated with the detection of a source under such con- 

ditions. The most widely used of these techniques is the likelihood 

method of Li and Ma [7] , Eq. (17) , henceforth referred to as LM. 

The approach relies on the fact that the event counts collected 

from source and background measurements are Poisson distributed 

regardless of their particular time behavior during the observation. 

Time-varying sources can thus be inferred using this method, but 

any prior information on the time behavior of these sources, as 

can be provided by other experimental observations or theoretical 

predictions, cannot be included. We show that the inclusion of a 

priori temporal information is an important tool in improving the 

sensitivity for the detection of variable or transient sources. 

The method we derive is resistant to systematic uncertainties 

and does not require detailed modeling of instrument response 

functions. Note that because this likelihood method is not binned–

or rather, the number of bins approaches infinity, as will be de- 

scribed henceforth–it can capture rapidly varying lightcurves with- 
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out the computational complexity and limited resolution of binned 

methods. It also provides an elegant test statistic that can be read- 

ily compared with the LM test statistic. 

Generalizations of the LM method have been introduced in the 

past (for example, [6] ). They generally address the detection of 

extended sources, and may need to rely on instrument response 

functions (IRFs) such as the point spread function or the energy 

reconstruction matrix. To the best of our knowledge, no attempt 

has been made to derive a test statistic based on a priori knowl- 

edge of the source light curve. This can be achieved in a straight- 

forward approach since the time-stamping of events is much more 

accurate (to ∼1 μs) than the variability time scale of any plausible 

gamma-ray source. 

Section 2 begins with a derivation of the LM test statistic 

Section 2.1 , and then gives a derivation of a simplified form of a 

time-dependent test statistic ( Section 2.2 ). The simplification relies 

on the assumption that the background rate is time independent. 

In Section 2.3 we explore methods of dealing with a background 

rate that is possibly time dependent. The approach is illustrated 

with a modification of the “ring background” model [2] , commonly 

used in the analysis of IACT observations, which has been designed 

to adjust to variable background rates. 

In Section 3 we demonstrate our method by applying it to 

Monte Carlo (MC) simulations of gamma-ray burst (GRB) ob- 

servations with imaging air Cherenkov telescopes (IACTs). In 

Section 3.1 we simplify the simulations by assuming that the back- 
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ground rate is time-independent. In Section 3.2 we explore the ef- 

fect of a time-dependent background on the behavior of the test 

statistic under the null hypothesis. 

2. Mathematical derivation 

2.1. The Li & Ma likelihood ratio 

We will briefly derive the LM test statistic using average back- 

ground and signal rates as free parameters instead of event counts 

as used in the original derivation. Our choice will serve as a 

smoother transition to the time-dependent test statistic. 

In the LM method, the following experiment is assumed: an on- 

source observation is made for time T on and the instrument is later 

shifted to observe a nearby off-source region, where no signal is 

expected, for time T off. A test statistic is derived using maximum 

likelihood estimation, 1 given the ratio of observing times α = 

T on 
T off 

and the number of counts during the observations, N on and N off. 

In the maximum likelihood model, the off-source event counts 

N off are only due to an unknown background rate b whereas the 

on-source counts N on are explained by an unknown signal rate s in 

addition to the same background rate. 

Defining the time-averaged background and signal rates, b and 

s , in relation to the expected number of counts: b T off = < N off > , 

( s + b ) T on = < N on >, the likelihood is given by 

L = P ( N on | < N on > ) P ( N off | < N off > ) 

= 

e −( s + b ) T on 

(
( s + b ) T on 

)N on 

N on ! 

e −b T off 

(
b T off 

)N off 

N off ! 
(1) 

where P ( N | < N > ) stands for the probability of observing N counts 

in a Poisson distribution of expected value < N > . 

To derive the null hypothesis likelihood, we simply set the sig- 

nal rate to 0. In this case the average background rate is b 0 which 

completely accounts for all counts observed: 

b 0 T off = < N off > ; b 0 T on = < N on > . 

The null hypothesis likelihood is given by 

L 0 = 

e −b 0 T on 

(
b 0 T on 

)N on 

N on ! 

e −b 0 T off 

(
b 0 T off 

)N off 

N off ! 
. (2) 

We find the maximum likelihood values for the rates by max- 

imizing the likelihood of both the null and signal models: b 0 = 

N on + N off 
T on + T off 

; b = 

N off 
T off 

; s = 

N on 
T on 

− N off 
T off 

. 

The likelihood ratio then simplifies into: 

L 0 

L 

= 

(
b 0 

b + s 

)N on 
(

b 0 

b 

)N off 

. (3) 

This expression is equivalent to Eq. (14) in [7] . Wilks’ theorem 

[11] allows us to describe the behaviour of the null likelihood ratio 

in the regime of high counting statistics. Under the null hypothe- 

sis, 
√ 

−2 log (L 0 / L ) is distributed as a Gaussian variable with unit 

standard deviation. 

2.2. Time-dependent signal, time-independent background 

To include arrival-time information, as may be advisable for a 

known time-dependent signal, we divide T on into an arbitrarily 

large number of bins N of equal length �t , such that N�t = T on . 

We will require the likelihood model to assign a probability for the 

number of counts within each bin independently. This will cause 

the likelihood to approach 0 as N → ∞ because it will factor in the 

1 Maximum likelihood estimation (MLE) is a method often used to estimate the 

parameters and significance [9] of astrophysical observations, and is used in the LM 

method. We will rely on MLE in this paper as well. 

chance that the arrival times fall within specific bins, the number 

of which approaches infinity. This behaviour will cancel out in the 

likelihood ratio test, and the resulting test statistic will converge 

nicely. 

In the limit of large N , each time bin will include either a single 

event, or no events at all. Each of the time bins is independently 

Poisson distributed with an expectation value approaching 0 as N 

increases. 

Let b denote the time-independent background rate, and s ( t ) 

denote the time-dependent signal rate. The background rate b is 

treated as an unknown to be optimized by maximum likelihood, 

and there may be similar unknowns within s ( t ), such as the am- 

plitude or, a “shape parameter”, etc. To use Wilks’s theorem we 

must require the signal and null likelihood models to be nested, 

and thus s ( t ) must have at least one such unknown, most simply 

the amplitude. If use of Wilks’s theorem is not possible, computer 

modelling can replace it, and the condition above can be relaxed. 

We denote the arrival times of on-source counts as { t on } = 

(t 1 , t 2 . . . t n on ) . The likelihood is a product of the Poisson probabili- 

ties for the count tally over all N time bins: 

L = 

( ∏ 

t i =(�t , 2�t , ... N�t ) 

[�t(b + s (t i ))] { 0 , 1 } 
{ 0 , 1 } ! e −�t(b+ s (t i )) 

) 

× (bT off ) 
N off 

N off ! 
e −bT off (4) 

where {0,1} are chosen depending on whether the are 0 or 1 

events in the t i bin. 

lim 

N→∞ 

L = �t N on 

( ∏ 

t i ∈{ t on } 
(b + s (t i )) 

) 

(bT off ) 
N off 

N off ! 

× e −b(T on + T off ) −
∫ T on 

0 dts (t) . (5) 

For the null hypothesis, we set s (t) = 0 , and denote the back- 

ground rate as b 0 , which will obey essentially the same likelihood 

ratio as the Li & Ma null hypothesis, with only a change of con- 

stants: 

L 0 = �t N on b N on 

0 

(b 0 T off ) 
N off 

N off ! 
e −b 0 (T on + T off ) . (6) 

Thus L 0 is also maximized by b 0 = 

N on + N off 
T on + T off 

, giving 

L 0 = �t N on b N on 

0 

(b 0 T off ) 
N off 

N off ! 
e −(N on + N off ) . (7) 

The last equality follows from introducing the exact form of b 0 
into the exponential. The likelihood ratio is given by 

L 0 

L 

= 

b 
N on + N off 

0 (∏ 

t i ∈{ t on } (b + s (t i )) 
)
b N off 

e b(T on + T off )+ 
∫ T on 

0 dt s (t) −(N on + N off ) . (8) 

This ratio can be further simplified by exploring the connection 

between s ( t ) and b . To do so, we must find the maximum of L or 

equivalently of log L . 

For the purpose of detecting a transient source such as a GRB, 

we will leave only one free parameter, the amplitude, in the sig- 

nal time profile: s (t) 
�= θ f (t) , where f ( t ) is a known time profile 

of the observed burst, typically 1/ t [1] . This choice reflects the cer- 

tainty of the flux decaying rapidly (usually as a power-law), and 

the uncertainty about the amplitude of VHE emission. 

We require both partial derivatives of log L to vanish at the 

maximum of the likelihood function: 

∂ log L 

∂b 
= 

N off 

b 
+ 

∑ 

t i ∈{ t on } 

1 

b + θ f (t i ) 
− (T on + T off ) = 0 (9) 
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