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For efficient first-principles computation of crystalline materials at high density and temperature, an opti-
mal choice of the supercell is important to minimize finite size errors. An algorithm is presented to con-
struct compact supercells for arbitrary crystal structures. Rather than constructing standard supercells by
replicating the conventional unit cell, we employ the full flexibility that we gain by using arbitrary combina-
tions of the primitive cell vectors in order to construct a series of cubic and nearly cubic supercells. In cases
where different polymorphs of a material needed to be compared, we are able construct supercells of con-
sistent size. Our approach also allows us to efficiently study the finite size effects in systems like superionic
water where they would otherwise difficult to obtain because a standard replication of the unit cells leads
to supercells that are too expensive to be used for first-principles simulations. We apply our method to sim-
ple, body-centered, and face-centered cubic as well as hexagonal close packed cells. We present simulation
results for diamond, silica in the pyrite structure, and superionic water with an face-centered cubic oxygen
sub-lattice. The effects of the finite simulation cell size and Brillouin zone sampling on the computed pres-
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sure and internal energy are analyzed.
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1. Introduction

First-principles computer simulations contribute to our under-
standing of a wide range of phenomena in physics [1], chemistry [2],
geophysics [3—-5], and to some extend also in molecular biology [6].
While ground-state calculations of crystalline materials can often be
performed in primitive crystallographic cells with a small number of
atoms, simulations at finite temperature require cells with a much
larger number of atoms. To simulate liquids, one typically chooses
cubic cells [7] and increases the number of atoms until the artificial
correlation, that is introduced by the periodic boundary conditions,
has a negligible impact on the computed properties [8]. Simulations
of crystalline materials often require the consideration of a compara-
ble number of atoms. Therefore, one constructs supercells by repli-
cating the primitive cell in all spatial directions. Such supercells
allow one to perform density functional molecular dynamics simula-
tions (DFT-MD) to determine the thermodynamic properties of sol-
ids [9-11] at elevated temperatures where the quasi-harmonic
approximation is no longer applicable [12]. Quasi-harmonic calcula-
tions typically use primitive cells and perturbation theory [13] but,
occasionally, supercells are still in use [14]. Supercells are also
employed to study the effects of disorder in different types of alloys
and solid solutions [15—18]. Computational studies of defects in
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solids also require supercells to reduce the interaction between
defect images [19-27]. For simulations of materials with incom-
mensurate crystal structures, one also constructs periodic supercells
that approximate incommensurate spatial periodicities as close as
possible [28,29]. The determination of the magnetic state of a struc-
ture with multiple transition metal atoms may also require super-
cells [30—-32]. The computation of x-ray absorption near edge
structures (XANES) is performed in supercells [33]. Direct melting
simulations and the two-phase methods [34,35] also rely on super-
cells. Variable cell dynamics simulations [3] as well as the study of
amorphization [36] and other structural changes in solids [37]
employ supercells as well. Quantum Monte Carlo (QMC) calculations
employ supercells to better capture the interaction effect between
all electrons [4,38,39]. Since QMC calculations are significantly more
expensive than density functional simulations, one is even more
constrained when choosing the supercell.

Despite all these applications, no general algorithm exists to con-
struct appropriate supercells molecular dynamics or Monte Carlo
simulation where one wants to minimize the artificial interaction
between period images. For cubic cells, one typically replicates the
unit cell uniformly in all spatial directions, n x n x n. This may, how-
ever, lead rather rapidly to cells that are prohibitively expensive. In
the case of superionic water in a face-centered cubic (fcc) structure,
the cubic unit cell has four water molecules. Thus, in Ref. [40], most
simulations were performed in a 2 x 2 x 2 with supercell with 32
molecules and only one, rather demanding finite-size test with 108
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molecules was conducted. In an earlier study of body-centered cubic
(bcc) superionic water [41], results for 2 x 2 x 2 and 3 x 3 x 3 super-
cells with 56 and 128 molecules, respectively, were reported. No
other cells were considered while, as we demonstrate in the article,
a number of intermediate nearly cubic cells could have been chosen
to facilitate a more efficient finite-size analysis.

Supercells of different shapes have constructed to study solid sol-
utions where, e.g., atoms of type A or B can occupy the sites in an fcc
or bec lattice [42]. Algorithms have been advanced to generate all
possible configurations for a given supercell size [43] and efficient
methods exit to remove symmetry-equivalent configurations [44].
The goal of our algorithm is different, however. We do not deal with
atomic disorder and, rather than generating all possible supercells,
we want to construct the best possible supercell for a given size in
order to minimize finite-size effects in many-body simulations.

The question of choosing the appropriate supercell becomes even
more difficult when one deals with non-cubic primitive cells. For
orthorhombic structures, one may construct n; x n, x ns supercells
that are nearly cubic while preserving the orthorhombic character.
For arbitrary triclinic cells, it is less obvious how to proceed. For
water ice at megabar pressures [45], a monoclinic structure with P2
symmetry, an orthorhombic structure with Pcca, and a hexagonal
structure with P3;21 symmetry have recently been predicted to
form at zero temperature [46]. To determine whether these
groundstate structures lead to superionic systems that are thermo-
dynamically more stable than the recently predicted fcc structure,
one needs to construct supercells, heat the structure up in with DFT-
MD simulations and compare their Gibbs free energies that may be
obtained via thermodynamic integration (TDI) [40]. For the
monoclinic, orthorhombic, hexagonal structures, one would want to
construct supercells that are again nearly cubic. Ideally one
would choose a cell of comparable size as in the bcc and fcc calcula-
tions but there is no straightforward method available to construct
such cells.

The question how to construct supercells of comparable size for
different structures will always be relevant when a material has dif-
ferent polymorphs that need to be compared. Silica, SiO, is a arche-
typal example with more than ten crystal structures [4,5]. Its pyrite-
type polymorph has a cubic unit cell with 12 atoms. We will demon-
strate that various reasonable supercell choices exist in additiona to
asimple n x n x n replication.

Recently, significant progress has been made in predicting
groundstate crystal structures with evolutionary algorithms [47],
random search techniques [46,48], and others methods [49], and
number of theoretical predictions have later been confirmed experi-
mentally [50]. Crystal structure prediction at higher temperature
outside of the quasi-harmonic regime is more difficult and requires
the comparison of the Gibbs free energy of thousands of structures.
Supercells need to be constructed in order to facilitate DFT-MD sim-
ulations and TDI calculations [51-55]. Rather than relying on human
intervention, we would want to use a computer algorithm that con-
structs reasonable supercells automatically for any cell shape, which
is the goal of this article.

2. Methods

Rather than constructing standard n x n x n supercells by repli-
cating the conventional unit cell, we employ the full flexibility that
we gain by using an arbitrary combination of the primitive cell vec-
tors, a, b, and ¢. We construct vectors of the supercell from a linear
combination of the primitive cell vectors [56],

aSS = iaa +jaE + kaa
bss = ipd +jsb +ksC, M
Css = ica +jcb + ch .

For each supercell vector, the coefficients i, j, and k are arbitrary inte-
gers that we restrict to take values from —n to n. We typically set n
between 5 and 10. j,, kg, and k, can be set zero for bcc and fcc lattices
[44]. In general, however, the construction of a supercell turns into a
9-dimensional optimization problem but symmetry arguments can
be used to reduce the search space significantly,
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The volume of the supercell can only be a multiple of primitive cell
volume, Vss =mVp. For a given volume ratio, m, one needs to decide
what optimization criteria, O, to employ. There are two obvious
choices.

(a) First one can maximize the distance to the nearest periodic
image, dnin. In the limit of large m, this will not lead to formation of
cubic cells. Rather hexagonal cells with |dss| = |bss|=|Css|, @ =8 =
90°, and y =120° will be favored' . While this may be a valid criteria
for some problems, for fcc systems, it means that the conventional
cubic supercells would not be reproduced.

(b) Alternatively one can design compact cells by minimizing the
radius of a sphere that is needed to enclose the supercell. For a given
cell, this radius is given by the maximum distance that any cell cor-
ner is separated from the cell center,

Rmax= max % iass +jbss + kcss)- 3)
i={-1,+1}
j={-1,41}
k={-1,+1}

This criteria allows us to pick cubic and nearly cubic cells. For the
remainder of this article, we employ the following optimization strat-
egy. We use (b) as our primary criteria. If the Ry« values of two cells
are identical, we select the cell with the larger minimum image dis-
tance, dnn. In rare cases where both of those values are identical also,
we prefer the cell where the angles deviate the least from 90° and
where the cell vectors deviate the least from each other in length.
The minimum image distance is defined as,
dmin = lim HQII’I iass +jESS + kESS s (4)
n=1"(ijk)=—n
i2 42 +k*>0

but one needs a more efficient method for its determination that is
applicable to arbitrary cell shapes. We use the following approach
where the lattice vectors are re-assigned to point to closer images.
We start with the assignment, dg =dss, bes =bss, and C¢s =Css and
order the vectors by magnitude such that, |ags|<|bss|<|Css|. Then we
successively derive new vectors that point to closer and closer
images using the following re-assignments,

./ Ny -y >/ N >12
bss — bgs—agsround[bgs-ags/ass], ()
-/ -/ -1 -/ -/ =12
Css — Css—agsround [cgs-ass/ass ], (6)
7 7/ .y BV -2
Css — Css—beground [css-bes/bgs . (7)

We keep re-assigning and re-ordering these vectors until no more

. -/ =1 -/
changes occur. Then we can derive dp, from agg, bgg, and cgg by set-
tingn=1inEq. (4).

1 We derived this result using a simulated annealing technique that optimized min-
imum image distance by varying all cell parameters at constant volume.
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