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TAGGEDPA B S T R A C T

A relativistic Green’s Function quantum average atom model is implemented in the Tartarus code for the
calculation of equation of state data in dense plasmas. We first present the relativistic extension of the
quantum Green’s Function average atom model described by Starrett [1]. The Green’s Function approach
addresses the numerical challenges arising from resonances in the continuum density of states without the
need for resonance tracking algorithms or adaptive meshes, though there are still numerical challenges
inherent to this algorithm. We discuss how these challenges are addressed in the Tartarus algorithm. The
outputs of the calculation are shown in comparison to PIMC/DFT-MD simulations of the Principal Shock
Hugoniot in Silicon. We also present the calculation of the Hugoniot for Silver coming from both the relativ-
istic and nonrelativistic modes of the Tartarus code.
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1. Introduction

TaggedPThere is a need for accurate calculation of equation of state (EOS)
data for plasmas in a wide range of temperature and densities stem-
ming from the study of astrophysical and laser generated plasmas.
These dense plasmas exist at such high densities and temperatures
that neither perturbative plasma or atomic physics approaches are
able to fully describe the system. Average atom (AA) models attempt
to account for the plasma environment while retaining a reasonable
description of the electronic structure. These density functional the-
ory based average atom models allow for the calculation of plasma
thermodynamic properties at a wide range of temperature and den-
sity points without a large computational expense.

TaggedPThere are versions of AA models that do not account for the
orbital nature of the electrons [2], but this lack of detail on the elec-
tronic structure leads to inaccuracies and loss of features in the
resulting EOS calculations. AA models that account for orbital struc-
ture provide more physically accurate descriptions of the plasma but
have long suffered from numerical challenges [3�7]. Chief among
these difficulties has been the robust accounting for of resonance
states in the continuum density of states. These so-called pressure
ionized states are narrow in width and highly peaked, making them
very important to the calculation of the electron structure. Robust
and sophisticated algorithms have been developed to deal with
these resonances by tracking their location and densely populating
the integration grid in their vicinity [8].

TaggedPIn order to circumvent the numerical complexity and computa-
tional time added to fully treat the resonances in the continuum
density of states, Starrett developed a nonrelativistic Green’s func-
tion based AA model that utilizes the properties of Green’s function
to broaden any features in the density of states, which can include
bound state features as well [1]. The need to carry out EOS calcula-
tions for heavy elements (high Z) requires a fully relativistic treat-
ment of the electrons. In this paper, we outline the theory needed to
transition from the nonrelativistic to the relativistic formalism and
the numerical implementation of that model in the form of the Tar-
tarus code. Though the main qualitative features of the model
remain unchanged, the transition is not trivial. We especially focus
on the details of the calculation of thermodynamic properties of the
plasma using this formalism. Since the typical orbital approaches
work well for higher angular momentum states where resonances
do not occur, Tartarus uses a hybrid approach with the Green’s func-
tion calculation applying to the lower angular momentum states
where resonances are prevalent and orbital calculations used else-
where.

TaggedPAs a means of validation, we present the consistency of the
plasma pressure calculated by Tartarus via the virial theorem and
numerical differentiation of the free energy. This shows the results
are consistent with what has been seen in previous AA calculations
[9]. Though Tartarus is able to quickly and robustly generate EOS
data for a wide range of plasma species and conditions, the underly-
ing AA model is not without approximations. More physically repre-
sentative models use Kohn-Sham Density Functional Theory
Molecular Dynamics (DFT-MD) to capture the electronic structure
and ionic positions [10�12]. These methods lead to physically accu-
rate results, but require simulations involving many separate atomic
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TaggedPsites iterated over many time steps, with computational time scaling
sharply with the temperature. This makes these calculations compu-
tationally expensive and unsuited for the generation of large sets of
EOS data. Another high fidelity modeling approach is Path Integral
Monte Carlo (PIMC) [13,14]. This method is also very expensive com-
putationally, and computation time increases as temperature is low-
ered. These methods provide benchmark calculations with which to
compare the results of less computationally expensive calculations.
In the last part of the paper we show the comparison of a shock
Hugoniot generated from a Tartarus EOS with simulations done
using DFT-MD/PIMC calculations. This illustrates both the strengths
and physical inaccuracies of the AA model. Tartarus in its current
version is well tested for generating EOS data of plasmas ranging
from 0.1 eV to 40,000 eV and for densities ranging from one-fifth of
solid density to well over eight times solid density. Hartree atomic
units (�h ¼ me ¼ e ¼ 1) are used throughout the rest of the paper
unless otherwise noted.

2. Theory

2.1. Average atom model and DKS-DFT orbitals

TaggedPThe average atom model as it is implemented in this work

approximates the typical atom in a plasma with a sphere of radius R

¼ 3
4pnion

� �1
3 which defines the atomic sphere volume,V, where nion is

the ion number density of the plasma, and has at its center a nucleus
of charge Z. Outside of the atomic sphere the effective potential seen
by the electrons is zero. The sphere is required to be charge neutral.

TaggedPInside the sphere the electron density is determined using finite
temperature relativistic density functional theory [15�17]. The Dir-
ac�Kohn�Sham (DKS) electron orbitals are defined by

Ĥ D
!
c � ¼ �

!
c � ð1Þ

where � is the electron energy. The DKS�DFT Hamiltonian, HD, is
defined as

Ĥ D ¼ T̂ þ ðb̂�I4Þmc2 þ V̂
eff ð2Þ

where T̂ is the kinetic energy operator defined as

T̂ ¼ c
!
a ¢ !p ð3Þ

with

a ¼ 0 !
s

!
s 0

� �
ð4Þ

Here !
s are the Pauli matrices, !

p is the electron momentum, Ij is the
identity matrix of size j, b̂ is defined as

b̂ ¼ I2 0
0 �I2

� �
ð5Þ

and V̂
eff

is the effective DKS potential operator, V̂
eff ¼ Veff ð!r ÞI4;with

Veff ð!r Þ defined as

Veff ð!r Þ ¼
�
Velð!r Þ þ Vxcð!r Þ

�
e2 ð6Þ

where the electrostatic part is

Velð!r Þ ¼�Z
r
þ
Z
V
d
!r
0 neð!r 0Þ
j!r�!

r
0j

ð7Þ

and the exchange and correlation part is

Vxcð!r Þ ¼ dFxc

dneð!r Þ
ð8Þ

with Fxc as the exchange and correlation free energy.

TaggedPThe DKS�DFT orbitals are vectors of size 4, commonly written as
a two component vector,

!
c � ¼

!
cA

�
!
cB

�

" #
¼

X
k;m

gkðr; �Þ!xk;mðr̂ Þifkðr; �Þ
!
x�k;mðr̂ Þ

h i
ð9Þ

where k is the relativistic angular momentum quantum number, m
is an index representing both the magnetic and spin quantum num-
bers, !

xk;mðVÞ are the well known spherical spinors, !
cA

� and !
cB

� are
the big and small components of the wavefunction, respectively, and
gk and fk are the big and small components of the radial wavefunc-
tion, respectively, which are the solutions to the radial Dirac equa-
tions:

½��Veff ðrÞ�gkðrÞ þ �hc
1
r

d
dr

�k
r

� �
ðrfkÞ ¼ 0

��hc1
r

d
dr

þ k
r

� ��
rgkðrÞ

�
þ ½��Veff ðrÞ þ 2mc2�fkðrÞ ¼ 0 ð10Þ

TaggedPWe can take advantage of the spherical symmetry in the model to
analytically reduce the calculations of interest. In the orbital formal-
ism, the radial electron number density can then be expressed as [8]

neðrÞ ¼
Z 1

�1
d�f ð�;mÞ

X
k

2jkj½g2kðr; �Þ þ f 2k ðr; �Þ� ð11Þ

where f(�,m) is the Fermi-Dirac occupation factor with chemical
potential m, and the integral from�1 to 0 reduces to a summation
over the discrete bound states.

TaggedPIn order to solve Eqs. 1�11, we use a self-consistent field (SCF)
scheme. This requires repeated evaluation of the electron density,
which consists of integration over the continuum energy spectrum as
well as a search for bound states at negative energies. For an orbital
based calculation, this requires resonance tracking for continuum
states and a dense energy grid in order to resolve sharp features in the
integrand, adding considerable computational time and complexity to
the calculation. The GF approach avoids this burden by ensuring that
the functions to be integrated are smooth and vary slowly in energy.
Surprisingly, the integrals can be extended to negative energies, thus
including bound states, with the integrand remaining smooth.

2.2. Green’s function formalism

TaggedPThe transition to the Green’s Function formalism in the average
atom model is straightforward. The SCF procedure remains
unchanged, but now the electron density is calculated via the GF by

neðrÞ ¼�1
p

=
Z 1

�1
dzf ðz;mÞTrGðr; r; zÞ ð12Þ

where z ¼ �þ ig is the complex energy (with g ¼ 0 for the integra-
tion in Eq. 12), Tr denotes the trace operation, and G(r, r, z) is the sin-
gle-site, one-electron Green’s function with spherical symmetry
already applied. This is exactly the same expression as is used in the
nonrelativistic formalism [1], and only the form of the GF changes
for the relativistic model. The spherically symmetric trace of the rel-
ativistic GF can be written as

TrGðr; r; zÞ ¼�ip 1þ z
2mc2

� �
�P

k
2jkj
4p

½gRkðrÞgIkðrÞ þ f Rk ðrÞf IkðrÞ�
ð13Þ

where p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2z 1þ z

2mc2

� �r
is the magnitude of the momentum and

the superscripts R and I refer to the regular and irregular
solutions of the radial Dirac�Kohn�Sham equations, respectively,
and the, in general complex, energy dependence of the solutions is
left implicit. The regular solution is obtained by integrating outward
from the origin and diverges at infinity, whereas the irregular
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