High Energy Density Physics 22 (2017) 12-16

journal homepage: www.elsevier.com/locate/hedp

Contents lists available at ScienceDirect

High Energy Density Physics

== DENSITY PHYSICS

(1L

Adjoint-based sensitivity analysis for high-energy density radiative

transfer using flux-limited diffusion

Kelli D. Humbird, Ryan G. McClarren*

Nuclear Engineering, Texas A&’M University, College Station, TX 77843-3133, United States

@ CrossMark

ARTICLE INFO ABSTRACT

Article History:

Received 6 June 2016

Revised 8 September 2016
Accepted 6 December 2016
Available online 7 December 2016

Uncertainty quantification and sensitivity analyses are a vital component for predictive modeling in the sci-
ences and engineering. The adjoint approach to sensitivity analysis requires solving a primary system of
equations and a mathematically related set of adjoint equations. The information contained in the equations
can be combined to produce sensitivity information in a computationally efficient manner. In this work,

sensitivity analyses are performed on systems described by flux-limited radiative diffusion using the adjoint
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approach. The sensitivities computed are shown to agree with standard perturbation theory and require sig-
nificantly less computational time. The adjoint approach saves the computational cost of one forward solve
per sensitivity, making the method attractive when multiple sensitivities are of interest.
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1. Introduction

The adjoint approach to performing sensitivity analyses is an effi-
cient method for identifying parameters that have the greatest influ-
ence on a particular quantity of interest (QOI). The adjoint method
requires formulation of a second problem, mathematically related to
the forward system of equations, and uses the solution to obtain sen-
sitivity information. This approach allows multiple sensitivities to be
computed by solving the forward and adjointequations once, and
evaluating inner products for each sensitivity. This is computation-
ally efficient compared to the perturbation approach to finding sen-
sitivities, which requires solving the forward problem twice per
perturbed parameter. The sensitivity is then found by dividing the
change in the QOI by the change in the perturbed parameter.

The main disadvantage of the adjoint approach is that can quickly
become memory intensive [1,2]. The forward and adjoint solutions,
along with parameter values, must be stored for all time, and at all
spatial locations, in order to compute the sensitivities. For high fidel-
ity, transient calculations the memory demand can rapidly exceed
that available on standard computers. Typically, writing and reading
to files is required, or a subset of information is stored and the solu-
tions are recomputed from these checkpoints [3].

The methodology for deriving an adjoint system of coupled dif-
ferential equations is well documented [4-6]. In this work, the
adjoint equations are derived for a system of coupled partial differ-
ential equations describing radiative flux-limited diffusion.
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Approximations to complex expressions that result from the non-
linear flux-limited diffusion model are shown not to introduce sig-
nificant error when computing sensitivities. The resulting system of
adjoint equations are linear, thus it takes less computational time to
perform a full sensitivity analysis using the adjoint approach than it
takes to compute a single sensitivity using the perturbation method.

2. Adjoint-based sensitivity analysis

An adjoint-based sensitivity analysis is performed on a system
described by flux-limited radiative diffusion with material tempera-
ture feedback. The evolution of the forward system is described by a
set of coupled partial differential equations [7-9]:
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where ¢ = ¢(r, t) is the scalar intensity with units of GJ/cm?ns,
T=T(r,t) is the temperature in keV, c is 29.98 cm/ns, a is 0.01372 GJ/
cm>-keV* , S is an external volumetric source, « is the opacity, o is
the density, C, is the specific heat, and D is the flux-limited diffusion
coefficient. Note that the solutions, ¢ and T, depend implicitly on the
material constants and the diffusion coefficient.

Flux-limited diffusion coefficients are designed to correct for
non-physical results related to the speed of propagation of informa-
tion. In the diffusion approximation, the current is given by the
expression:

J=-DV¢. @)
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The approximation is inaccurate where the gradient of the scalar
intensity is large; flux-limited diffusion coefficients prevent the cur-
rent from exceeding physical values in such regions. The Larsen coef-
ficient is used in this work [10]:
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When the gradient of the scalar intensity is small, this reduces to the
standard diffusion coefficient; when the gradient is large, the second
term in the denominator dominates, thus preventing the current
from exceeding the scalar intensity. Typically n is chosen to be two,
but it can be adjusted such that the diffusion solution agrees more
closely with transport calculations [11].

To derive the equations for the adjoint scalar intensity, ¢, and
the adjoint temperature, T', we use the Lagrangian approach to form
the sensitivity expression. First, the differential equations are com-
bined to form the operator F:
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Following the work of Stripling [3] and Stripling, Anitescu, and
Adams [12], to find the adjoint system for the coupled set of equa-
tions, a Lagrangian is formed:

L= / [(Q)—(4, F)]dt, (6)

where the angular brackets denote integrals over all space and (Q) is
the quantity of interest. The integral over time is taken from ¢, to ty.
The operator F is defined to be zero, thus the sensitivities of (Q) and
L are equivalent. To derive the expression for the sensitivity, the
functional derivative of the Lagrangian is taken with respect to 6
using the chain rule:
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In this equation, x= (¢ T)", the subscripts denote partial derivatives,
% is the time derivative of x, and A is an undetermined two compo-
nent Lagrange multiplier. Using integration by parts, the integral can
be rewritten as:
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The only term in the above expression that cannot be computed
directly is xg, the derivative of the solution vector with respect to 6.
If this term was known, the adjoint approach would not be necessary
as the sensitivity could be computed by direct differentiation of the
QOLl.

The adjoint equations are defined to be the conditions that are
imposed on A = (¢ T") such that the integrand of the final term is
eliminated. Thus, the adjoint equations are given by the expression:
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Note that the first term in (9) includes the sensitivity of the initial
conditions to the parameter 6. This term can be included if known;
in the work that follows it is simply assumed that the sensitivity of
the initial conditions is not of interest and the term is taken to be
zero; this assumption is not necessary in general. However, the value
of Xy at the final time is not known, and must be eliminated by

imposing appropriate terminal conditions on the adjoint variables.
The resulting system of adjoint equations evolve backward in time,
with the terminal condition:

Aty)=0. (10)

Physically, the terminal condition states that events occurring
beyond the final time step do not influence the adjoint solution
[3,13].

To summarize, the forward system of equations (Eq. (1)) are
solved provided initial conditions and the adjoint system of
equations (Eq. (9)) are solved by imposing terminal conditions
(Eq. (16)). The forward and adjoint solutions can then be used to
evaluate the sensitivity of the QOI with respect to any parameter, 6,
by evaluating Eq. (11):
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The QOI for the following examples is the time integrated absorp-
tion, A, in particular regions, thus:

Q= / P dV, (12)

where the spatial integral is taken over the volume of interest. The
expressions for F and (Q) are substituted into Eq. (9), and the system
is split into its constituent components. The result is a set of coupled
equations for the adjoint scalar intensity and the adjoint tempera-
ture:
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The final expression for the sensitivity of the absorption, A, with
respect to an arbitrary parameter 6 is given by:
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2.1. Sensitivity examples

In this study the primary quantity of interest is the total absorp-
tion within particular volumes:

A://K,o¢ dvdt,

where the integration over time is taken from ¢, to trand the spatial
integration is taken over a region of interest. When computing sensi-
tivities, a few complicated derivatives must be evaluated. For exam-
ple, when computing the sensitivity of the absorption with respect
to the opacity, the following derivative appears in the final term of
Eq.(14):
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The flux-limited form of the diffusion coefficient complicates the
spatial derivative. To avoid performing this derivative analytically, a
second-order centered finite difference approximation is employed.
For a particular direction in Cartesian geometry, the expression
above is estimated by:
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