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TAGGEDPA B S T R A C T

The average-atom model combined with the hyper-netted chain approximation is an efficient tool for elec-
tronic and ionic structure calculations for warm dense matter. Here we generalize this method in order to
describe non-equilibrium states with different electron and ion temperature as produced in laser-matter
interactions on ultra-short time scales. In particular, the electron-ion and ion-ion correlation effects are
considered when calculating the electron structure. We derive an effective ion-ion pair-potential using the
electron densities in the framework of temperature-depended density functional theory. Using this ion-ion
potential we perform D14X Xmolecular dynamics simulations in order to determine the ionic transport properties
such as the ionic diffusion coefficient and the shear viscosity through the ionic velocity autocorrelation
functions.
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1. Introduction

TaggedPIonic transport properties of warm dense matter (WDM) are cru-
cial input parameters in hydrodynamic simulations for inertial con-
finement fusion (ICF) experiments and in modeling astrophysical
objects [1�4]. However, due to the strong ion-ion coupling and elec-
tron degeneracy in the WDM regime, it is difficult to describe the
electronic and ionic structure simultaneously in theoretical calcula-
tion [5]. In particular, when an ultra-short, femtosecond laser pulse
interacts with the dense matter, a non-equilibrium state with differ-
ent electron and ion temperature is generated [6,7]. According to a
two-temperature model, the relaxation time in the electron-ion sys-
tem is more longer than for the pure electron and ion subsystem due
to great mass difference between electrons and ions [8,9]. This two-
temperature state is usually treated by assuming that electrons and
ions are in local thermodynamic equilibrium having different tem-
peratures, Ti and Te [10]. However, it is still a challenge to improve
such simple models and to describe WDM under non-equilibrium
conditions consistently [11,12].

TaggedPQuantum molecular dynamics (QMD) simulations, which calcu-
late the electron structure in the framework of density functional
theory (DFT) and solve the Newton equation to describe the ionic
motion, have become a D15X Xpowerful tool for computing the properties
of WDM in the low temperature region [13�17]. QMD can also be

TaggedPapplied to describe the properties of hot dense matter by using
quantum Langevin molecular dynamics (QLMD) simulations [18,19],
which consider the ion moving in dense electronic system, as the
motion of Brownian particle, and electronic random collision yields
friction force. Alternatively, orbital-free molecular dynamics (OFMD)
[20�24] and pseudo-atom molecular dynamics (PAMD) simula-
tions [25,26] were developed to describe the warm and/or hot
dense plasma region. These methods use the Thomas�Fermi
approximation or Khon�Sham equation to compute the electron
structure and molecular dynamics simulation to give the ionic
structure. The hyper-netted chain (HNC) approximation within the
Ornstein�Zernike (OZ) equation can also be solved to describe the
ion structure if the ion-ion pair potential is obtained consistently
from the electron structure calculations [27�31]. Recently, we
have combined the average-atom model [32,33] with the HNC
approximation (AAHNC) to calculate the electronic and ionic struc-
tures of Al and the x-ray Thomson scattering (XRTS) spectrum in
the WDM regime [34]. In this method, ion structure is determined
in HNC approximation, where the ion-ion pair potential is obtained
from the electron distribution in the framework of temperature-
dependent DFT [35,36], and the electron structure is calculated
through Dirac equation through considering the ion and free
electron correlation effects. The electron and ion structure
are described through different approximation and solved self-
consistently.

TaggedPIn the present study, we investigate the ionic structure and trans-
port properties considering difference temperatures for ion and
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TaggedPelectron subsystems using the AAHNC method. The electron struc-
ture is obtained by solving the Dirac equation in the average-atom
model which has considered the effects of ions interacting via an
ion-ion pair correlation function [34]. The ionic pair potentials are
obtained from the electronic density distributions of two isolated
ions based on a modified temperature- and density-dependent Gor-
don�Kimmodel [35,36]. When we calculate the electronic structure,
the ionic structure is considered and, at the same time, the electronic
structure is needed when calculating the ion-ion pair potential.
This problem is solved self-consistently [34]. Subsequently, class-
ical (CMD) and Langevin molecular dynamic (LMD) simulations
based on the ion-ion pair potential derived from the AAHNC method
are performed to compute the ionic self-diffusion coefficient and the
viscosity of Al according to the velocity autocorrelation function
[37]. When solving the Dirac and Newton equation, we use different
temperatures for electron and ion, Te and Ti, respectively.

2. Theoretical methods

2.1. Two-temperature AAHNC model

TaggedPIn the Born�Oppenheimer approximation, the electronic and
nuclear structures can be described separately. The electronic motions
can be described by the Schr€odinger or Dirac equation in the central-
field approximation. In local thermal equilibrium, for an isolated ion
we have computed the electronic structures through the modified
D16X Xaverage atom (AA) model [32,33]. It considers the electron energy
level broadening due to the density effect on the electronic distribu-
tions in a statistical way. In Ref [34], we also included the effects of
interactions with the surrounding free electrons and ions through the
correlation function. Here we try to include the effects of different
temperatures for the electrons and ions. Each bound electron is con-
sidered in the ion-sphere, and wave function is obtained by solving
the Dirac equation:
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Pnk(r) and Qnk(r) are, respectively, the large and small components of
wave function of orbital nk, c is the speed of light, and V(r) is the
self-consistent potential which has the form [34,38]:
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Where the first four terms constitute the single ionic contribution,
and the last two terms in Eq. (3) represent interactions with the sur-
rounding free electrons and ions, respectively. Because the central
potential, V(r), depends on the electron density and the correlation
functions, the solution of Eqs. (1)�(3) has to be done self-consis-
tently if we know the correlation functions. When the electron and
ion structures are solved, the different temperatures for electron
and ion, Te and Ti, respectively, are considered, and bee is equal to
ðkBTeÞ¡1 and bie is ðkB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2
e C T2

i

q
Þ¡1; where kB is the Boltzmann’s con-

stant. In order to obtain the same electron density at the boundary
for all ions, the central potential at the ion-sphere boundary is cho-
sen as the common reference point in the AA model. In this way we
define electrons with energies larger than zero as free and with nega-
tive energies as bound. In our AA model, the boundary conditions are
the same as Eqs. (3) and (4) in Ref. [32] when we solve the Eqs. (1)
and (2), which the bound state orbitals are broadened to energy
bands, and the density of bound electrons is computed through

TaggedPwave functions in the central-field approximation. Free electrons are
described much simpler using the TF approximation and the free
electron density is calculated with a Fermi�Dirac distribution in
momentum space, as described in the Ref [34].

TaggedPIn our calculation, the ion-ion correlation functions extend to the
whole space through the pair correlation function, however, we only
consider correlation effects inside the ion-sphere when calculating
the electron structure of the isolated ion. The ion-ion pair potential
is calculated using the modified Gordon�Kim (GK) model [35],

VðRÞDVCoulðRÞCVkðRÞCVeðRÞCVcðRÞ; ð4Þ
where R is the distance between the two nuclei, VCoul(R) is their
static Coulomb interaction, Vk(R) is the kinetic energy, Ve(R) and
Vc(R) are the exchange and correlation energies, respectively, which
depend on the electron density r(r) and temperature. The static Cou-
lomb potential can be calculated directly from the electron density
according to the GK model [36]. The difference between the present
model and the original GK model is that the electronic density of the
single ion is divided into two parts, the uniformly distributed free-
electron sea r(rb) and the quasi-localized electrons rloc

i ðrÞ; see Ref.
[35]. The kinetic energy Ek(r), exchange energy Ee(r), and correlation
energy Ec(r) [36] are computed based only on the electron densities
in the spheroidal coordinate system, λ1 D ðr1 C r2Þ=R; λ2 D ðr1¡r2Þ=R.

TaggedPThe ion-ion and free electron-electron correlation functions are
calculated using the HNC approximation ðaD e; iÞ;
haaðrÞD exp½¡baaVaaðrÞChaaðrÞ¡CaaðrÞ�¡1 ð5Þ
and the Ornstein�Zernike relation in Fourier space

haaðkÞDCaaðkÞ½1Cr0
ahaaðkÞ�; ð6Þ

where r0
a is the average density for the electrons or ions. The free

electron potential is considered using the Deutsch formula [27],
which includes quantum effects such as the uncertainty principle
and exchange interactions which lead to its temperature depen-
dence. The ion-electron pair correlation function is defined via the
excess free electron density,

hieðrÞD
rf ðrÞ
r0
e

¡1; ð7Þ

where r0
e is the uniform electron density given by r0

e DrðrbÞ.
TaggedPD17X XWhen we calculate the electronic structure, the pair correlation

functions of electrons and ions are needed. On the other hand, ion-
ion pair potentials are based on the electron density distribution.
We obtain the electronic and ionic structure using the self-consis-
tent calculations, see Ref [34]. After reaching converged electronic
and ionic structures, we obtain the ion-ion pair potentials, which
depend on the electronic density distribution and temperature.
Based on this results, we can perform the molecular dynamics to
calculate the ionic transport properties.

2.2. Langevin molecular dynamics simulation

TaggedPIn the D18X Xdense matter regime, collisions between electrons and ions
are important. In particular, for the high-Z elements, this electron-
ion collisions become more important with increasing ionization.
We have discussed the effects in Ref. [18,19] using quantum Lange-
vin molecular dynamics (QLMD), which considers the ion moves
in dense electronic medium, as the motion of Brownian particle.
Random electronic collisions lead to friction force. When simulating
ionic motion, we use the Langevin equation [18]

mi
d2riðtÞ
dt2

DF¡gmi
driðtÞ
dt

CNi ; ð8Þ

where mi is the ionic mass, r, the ionic positions, F, the force calcu-
lated for the ion-ion pair potential, Ni the Gaussian random noise,
and g is the Langevin friction coefficient, which is estimated by the
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