
Icarus 296 (2017) 99–109 

Contents lists available at ScienceDirect 

Icarus 

journal homepage: www.elsevier.com/locate/icarus 

Stability of ice on the Moon with rough topography 

Lior Rubanenko 

a , b , ∗, Oded Aharonson 

b 

a Department of Earth, Planetary and Space Sciences, UCLA, 595 Charles E Young Dr E, Los Angeles, CA 90095, USA 
b Weizmann Institute of Science, Rehovot, 7610 0 01, Israel 

a r t i c l e i n f o 

Article history: 

Received 8 October 2016 

Revised 24 April 2017 

Accepted 31 May 2017 

Available online 31 May 2017 

Keywords: 

Ices 

Moon 

Surface 

Regoliths 

Solar radiation 

a b s t r a c t 

The heat flux incident upon the surface of an airless planetary body is dominated by solar radiation dur- 

ing the day, and by thermal emission from topography at night. Motivated by the close relationship be- 

tween this heat flux, the surface temperatures, and the stability of volatiles, we consider the effect of the 

slope distribution on the temperature distribution and hence prevalence of cold-traps, where volatiles 

may accumulate over geologic time. We develop a thermophysical model accounting for insolation, re- 

flected and emitted radiation, and subsurface conduction, and use it to examine several idealized repre- 

sentations of rough topography. We show how subsurface conduction alters the temperature distribution 

of bowl-shaped craters compared to predictions given by past analytic models. We model the dependence 

of cold-traps on crater geometry and quantify the effect that while deeper depressions cast more persis- 

tent shadows, they are often too warm to trap water ice due to the smaller sky fraction and increased 

reflected and reemitted radiation from the walls. In order to calculate the temperature distribution out- 

side craters, we consider rough random surfaces with a Gaussian slope distribution. Using their derived 

temperatures and additional volatile stability models, we estimate the potential area fraction of stable 

water ice on Earth’s Moon. For example, surfaces with slope RMS ∼15 ° (corresponding to length-scales 

∼10 m on the lunar surface) located near the poles are found to have a ∼10% exposed cold-trap area 

fraction. In the subsurface, the diffusion barrier created by the overlaying regolith increases this area 

fraction to ∼40%. Additionally, some buried water ice is shown to remain stable even beneath temporar- 

ily illuminated slopes, making it more readily accessible to future lunar excavation missions. Finally, due 

to the exponential dependence of stability of ice on temperature, we are able to constrain the maximum 

thickness of the unstable layer to a few decimeters. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

The small obliquity of airless planetary bodies such as the Moon 

and Mercury causes topographic depressions located near their 

poles to be in permanent or near-permanent shadow for geologic 

time periods. Previous works ( e.g. Watson et al., 1961 ) have shown 

that the lifetime of volatile deposits residing within those cold- 

traps is comparable to the lifetime of bodies in the Solar System. 

The cold-trap distribution is tightly linked to the temperature 

distribution on and below the surface, which itself is governed by 

the shape of the topography controlling the abundance of shad- 

ows and the amount of radiation reaching them. To a lesser ex- 

tent, it is also a function of the thermal properties controlling con- 

duction into the subsurface. The latter can be modeled by solving 
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the 1D heat diffusion equation ( Schorghofer and Aharonson, 2005; 

Aharonson and Schorghofer, 2006 ). The former has been modeled 

assuming the topography consists of spherical craters ( Buhl et al., 

1968; Ingersoll et al., 1992; Hayne and Aharonson, 2015 ) or of nor- 

mally distributed slopes ( Smith, 1967; Bandfield et al., 2015 ) to 

which an analytic solution exists. In the past two decades more 

general models have been developed utilizing algorithms such as 

ray casting and ray tracing ( Paige et al., 1992; Vasavada et al., 

1999; Davidsson and Rickman, 2014 ), combined with subsurface 

heat conduction. Using those models, cold-traps were shown to 

exist near the poles of the Moon and Mercury. Later, tempera- 

tures characteristic of cold-traps ( Paige et al., 2010b ) and direct 

evidence for frozen volatiles deposits were discovered ( Colaprete 

et al., 2010 ) on the Moon as well as remotely sensed on Mercury 

in RADAR ( Harmon et al., 2001 ), laser altimetry ( Neumann et al., 

2013; Paige et al., 2013 ) and visible imagery ( Chabot et al., 2014 ). 
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Fig. 1. Two examples for the topographies we used in modeling the temperature distribution, visualized in natural units. (a) A spherical crater with depth to diameter 

� = 0 . 2 . (b) A rough random Gaussian surface with a slope RMS σs = 15 ◦ . 

2. Models 

2.1. Roughness models 

Here we develop and employ a thermophysical model that ac- 

counts for insolation, scattering, thermal emission and subsurface 

conduction, in order to investigate the link between roughness, 

temperature and cold-trap stability on and below the lunar surface. 

We first calculate the temperature distribution of two commonly 

used, idealized representations of rough topography: a hemispher- 

ical (bowl-shaped) crater and a rough random surface with a Gaus- 

sian slope distribution. Subsequently, we apply our findings to dis- 

cuss the stability of surface and subsurface water ice. 

2.1.1. Spherical craters 

A spherical crater is defined as a cavity shaped as a portion of 

a sphere of radius r , surrounded by a flat plane. The size of the 

crater is defined by its radius R , its depth h , or by its depth to 

diameter ratio, � = h/ 2 R . Simple craters with diameters < 15 km 

on the Moon are well approximated by spherical cavities with �

∼ 1/5 to � ∼ 1/16 ( Pike, 1977; Stopar et al., 2012 ). 

The height of the topography z is given in terms of the horizon- 

tal coordinates x and y . The equation describing the topography is 

z = r − h ±
√ 

r 2 − x 2 − y 2 . An example for a spherical crater with 

� = 1 / 5 can be seen in Fig. 1 a. 

2.1.2. Rough random surfaces with a Gaussian slope distribution 

A common way to quantify rough terrain on airless bodies out- 

side simple craters is to assume it is random with a Gaussian 

height and slope distributions ( e.g. Hagfors, 1964; Smith, 1967; 

Jamsa et al., 1993; Davidsson and Rickman, 2014; Davidsson et al., 

2015; Bandfield et al., 2015 ), and describe it via the RMS slope 

magnitude at a given scale, σ s . The dependence of the roughness 

on the 1D lateral scale may be described by a power-law spec- 

trum with an exponent which was measured for the lunar polar 

regions to be ∼ 2.9 ( Rosenburg et al., 2011; Schroeder, 2012 ). In 

our model, σ s is computed at the facet scale. Different values of σ s 

may be regarded as corresponding to different scales on the Moon 

( Rosenburg et al., 2011 ). Therefore, in our discussion of ice stabil- 

ity we specify in addition to the RMS slope, the scale that corre- 

sponds to this value according to measurements of the lunar sur- 

face. These random surfaces could be used to explore topographies 

in scales lower than the instrument resolution ( e.g. , Rubanenko 

et al., 2017 ). 

In order to construct the model surface, we seed a matrix with 

a 2D Gaussian random field with a unity standard deviation and 

zero mean. This field has white spectrum. We compute the 2D 

discrete Fourier transform of the matrix and multiply its magni- 

tude by a power-law weight function in wave number, shaping its 

power spectrum to the desired form. We smoothly truncate the 

coefficients of the highest 20% of the wavenumbers to avoid unre- 

alistic discontinuities in the field. To obtain the surface elevation 

map we compute the inverse discrete Fourier transform and scale 

its overall magnitude to obtain the desired RMS slope at the pixel 

scale. This results in a height distribution with a normally dis- 

tributed magnitude and uniformly distributed phase ( Wu, 20 0 0 ). 

The resulting surface directional slopes are Gaussian distributed, 

bi-directional slope magnitudes are Rayleigh distributed with slope 

aspects uniformly distributed. An example for a random rough sur- 

face with these properties can be seen in Fig. 1 b. 

2.2. Thermophysical model 

In order to isolate the different variables that determine the 

surface and subsurface temperature of airless bodies, we have 

constructed a thermophysical illumination model. As mentioned 

above, this has been accomplished by employing different meth- 

ods, usually involving a versatile illumination algorithm combined 

with a heat conduction model into the subsurface ( e.g. , Paige et al., 

1992; Salvail and Fanale, 1994; Lagerros, 1997; Davidsson and Rick- 

man, 2014 ). Our improved model includes a highly efficient il- 

lumination algorithm and an implicit subsurface heat conduction 

model, allowing us to achieve convergence in the subsurface tem- 

peratures using only few integration time steps. 

2.2.1. Shadowing and multiple scattering 

The Sun is the primary energy source for many airless bodies 

in the Solar System as the geothermal energy flux can usually be 

neglected. To estimate the intensity of incident radiation, we start 

with a topography represented by a matrix of size N × N square 

facets of equal area, denoted by their linear index i assuming val- 

ues between 1 and N 

2 . For both the spherical craters and Gaussian 

random surfaces we choose N = 100 . 

For simplicity, the solar flux is computed as from a point 

source, smoothed in time (see Section 2.3 ). Other approaches ( e.g. , 

Davidsson and Rickman, 2014 ) scale the flux received by a facet by 

the fraction of its vertices that are illuminated. We expect this cor- 

rection to be important only near the shadow edges, therefore we 

consider an error of 1 pixel when determining the flux reaching 

pixels located in those areas. 

In order to simulate shadows and reflections from the surface 

we adopt the Ray Casting technique ( Roth, 1982 ). Virtual light rays 

are cast as probes in all directions, and their intersection points 

with other objects are used in order to determine the objects scale 

and distance from one another. This method is relatively simple 

but computationally intensive due to the need to find all surface- 

line intersections. Using predefined geometrical shapes may reduce 



Download English Version:

https://daneshyari.com/en/article/5486972

Download Persian Version:

https://daneshyari.com/article/5486972

Daneshyari.com

https://daneshyari.com/en/article/5486972
https://daneshyari.com/article/5486972
https://daneshyari.com

