
Icarus 284 (2017) 59–69 

Contents lists available at ScienceDirect 

Icarus 

journal homepage: www.elsevier.com/locate/icarus 

Secular obliquity variations of Ceres and Pallas 

Bruce G. Bills a , ∗, Bryan R. Scott b 

a Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, United States 
b Department of Physics and Astronomy, University of California, Riverside, Riverside, CA 92521, United States 

a r t i c l e i n f o 

Article history: 

Received 29 July 2016 

Revised 12 October 2016 

Accepted 27 October 2016 

Available online 9 November 2016 

Keywords: 

Ceres 

Pallas 

Asteroid 

Rotation 

a b s t r a c t 

We examine variations in the orientations of the orbit poles and spin poles of Ceres and Pallas, on time 

scales of a few million years. We consider these two bodies together because they have similar orbits, 

but very different present states of knowledge concerning internal mass distribution and spin pole ori- 

entation. For Ceres, the Dawn mission has recently provided accurate estimates of the current spin pole 

orientation, and the degree 2 spherical harmonics of the gravitational potential. The polar moment of 

inertia is not as well constrained, but plausible bounds are known. For Pallas, we have estimates of the 

shape of the body, and spin pole orientation and angular rate, all derived from optical light curves. Using 

those input parameters, and the readily computed secular variations in the orbit pole, we can compute 

long term variations in the spin pole orientation. This provides information concerning long term varia- 

tions in insolation, which controls stability of surface volatiles. 

© 2016 Published by Elsevier Inc. 

1. Introduction 

The objective of this study is to examine long term behavior in 

the spin and orbit dynamics of two large asteroids, (1) Ceres and 

(2) Pallas. In particular, we focus on the motions of the spin and 

orbit poles. The orbit poles vary, in response to perturbations from 

the major planets, mainly Jupiter and Saturn, and precess about the 

invariable pole of the solar system. The spin poles precess about 

the respective orbit poles, in response to solar torques acting on 

the oblate figures, at rates which depend upon the oblateness of 

the mass distribution, and the ratio of the spin and orbit periods. 

The obliquity, or angular separation between the spin and or- 

bit poles, is particularly important for several reasons. One is that 

it controls the spatiotemporal patterns of diurnally averaged in- 

solation ( Ward, 1974 ) and thereby influences variations in surface 

and sub-surface temperature, which in turn determines stability of 

volatile compounds near the surface ( Hayne and Aharonson, 2015; 

Schorghofer, 2016 ). 

We consider Ceres and Pallas together, for several reasons. One 

is that their orbital periods, and semimajor axes are very similar, 

and thus the strength and cadence of orbital perturbations from 

Jupiter and other planets are quite similar, despite the fact that 

their current orbits are rather different, in terms of inclination 

and eccentricity. Another reason for considering them together is 

that current knowledge of the bodies is dramatically different. The 

∗ Corresponding author. 

E-mail address: bruce.bills@jpl.nasa.gov (B.G. Bills). 

Dawn mission has measured the gravitational field and rotation 

state of Ceres very accurately ( Park, 2016 ). In contrast, the shape 

and rotation of Pallas are much more poorly known, with both 

coming from light curve analyses, occulations, and images from 

HST and adaptive optics systems ( Carry, 2010; Drummond, 2014; 

Schmidt, 2009 ). In this regard, Ceres and Pallas display a rather 

sharp contrast. 

It will also emerge that departures from spherical symmetry in 

the shapes and mass distributions of these bodies are rather simi- 

lar, with Ceres being only slightly closer to spherical than Pallas. As 

a result, the free precession periods of Ceres and Pallas are rather 

similar. The amplitude of their obliquity oscillation are different, 

but that is mainly due to different amplitudes of orbital inclina- 

tion forcing. 

We note that there have been some previous considerations of 

the spin pole dynamics of Ceres, including Bills and Nimmo (2011) , 

Rambaux et al. (2011) , Petit et al. (2014) . Previous treatments of 

the spin dynamics of Pallas include Skoglov et al. (1996) , Skoglov 

and Erikson (2002) , and Lhotka et al. (2013) 

Lhotka et al. estimated the present-day obliquity, and the spin 

pole precession rate of Pallas, but did not examine a history of 

obliquity variation. Skoglov and Erikson (2002) examined spin pole 

precession trajectories for 25 main belt asteroids, using reasonably 

accurate orbit models, and an assumed spin pole precession rate of 

10 arcsec/year. The analysis of Skoglov et al. (1996) also assumed a 

spin pole precession rate for Pallas of 10 arcsec/year. 

Taylor (1982) examined secular motion of the orbit of Pallas. 

His primary conclusion was that the 18:7 mean motion resonance 
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between Pallas and Jupiter does not significantly influence the sec- 

ular motion. 

2. Coordinate systems 

A peculiar feature of this study is that it requires consideration 

of 3 different coordinate frames, and both Cartesian and spherical 

coordinates in each frame. This arises from the differing historical 

conventions for reporting spin and orbit geometries. 

Spin pole orientations of solar system bodies are almost always 

reported ( Archinal, 2011 ) using spherical coordinates, in the celes- 

tial equatorial coordinate system ( Urban and Seidelmann, 2012 ). 

Right ascension ( α) is the angular distance, measured eastward 

along the celestial equator from the vernal equinox to the hour cir- 

cle of the point in question. Declination ( δ) is measured north or 

south of the celestial equator, along the hour circle passing through 

the point in question. Since Earth’s equator plane precesses about 

the orbit plane, definition of an inertial coordinate system requires 

specification of a reference epoch. In most recent work, the epoch 

used is J20 0 0, which is 1 January 20 0 0. The Cartesian coordinates 

of the spin pole unit vector ̂  s , in this reference frame, are given by 

̂ s = { cos [ α] cos [ δ] , cos [ α] sin [ δ] , sin [ α] } (1) 

Planetary orbital geometry is most often reported in terms of 

either Cartesian components of position P = { x, y, z} and velocity 

V = { u, v , w } vectors, or Keplerian elements. In either case, the ref- 

erence frame is generally taken to have the ecliptic plane, and ver- 

nal equinox, at J20 0 0, as defining the directions, and the position 

of the Sun defining the origin. The direction of the instantaneous 

orbit pole is given by the unit vector parallel to the orbital angular 

momentum vector 

̂ n = 

P × V 

| P × V | (2) 

Among the Keplerian elements, the inclination ( I ) and longitude of 

ascending node ( �) are relevant to orbit pole orientation. In fact, 

the orbit pole is given by ̂ n = { sin [ I] sin [�] , − sin [ I] cos [�] , cos [ I] } (3) 

We note that a unit vector, specified by spherical polar coordinates, 

consisting of longitude ( φ) and latitude ( θ ) has the form ̂ u [ φ, θ ] = { x, y, z} = { cos [ θ ] cos [ φ] , cos [ θ ] sin [ φ] , sin [ θ ] } (4) 

The inverse of this transformation, from Cartesian back to spherical 

coordinates, is 

φ = arctan [ x, y ] (5) 

θ = π/ 2 − arctan 

[ 
z, 

√ 

x 2 + y 2 
] 

The corresponding ecliptic frame longitude and latitude for the or- 

bit pole, as given by (3) , are 

φn = � − π/ 2 (6) 

θn = π/ 2 − I 

The obliquity ( ε), or angular separation between spin and orbit 

poles is given by 

cos [ ε] = ̂

 n ·̂ s (7) 

However, the unit vectors must first be written in a common co- 

ordinate frame. The versions listed above, in Eqs. (1) and (3) are 

in different frames. To convert a vector from the equatorial to the 

ecliptic frame, we rotate about the x-axis, through an angle equal 

to Earth’s obliquity ( Hilton, 2006 ) 

ε ∗ = 23 . 43928108 

◦ (8) 

Table 1 

Orbital periods. 

Body Period Period 

day year 

Ceres 1681 .2435 4 .602994 

Pallas 1684 .9040 4 .613016 

Jupiter 4332 .3548 11 .86134 

The corresponding x -axis rotation matrix, for rotation through a 

generic angle q , has the form 

R 1 [ q ] = 

[ 

1 0 0 

0 + cos [ q ] − sin [ q ] 
0 + sin [ q ] + cos [ q ] 

] 

(9) 

The conversion thus has the form [ 

x equ 

y equ 

z equ 

] 

= R 1 [ ε 
∗] ·

[ 

x ecl 

y ecl 

z ecl 

] 

(10) 

and, of course, the inverse transformation is just [ 

x ecl 

y ecl 

z ecl 

] 

= R 1 [ −ε ∗] ·
[ 

x equ 

y equ 

z equ 

] 

(11) 

In our consideration of orbital and rotational variations of Ceres 

and Pallas, we will specify the present day orbit geometry in terms 

of inclination ( I ) and nodal longitude ( �), while the present spin 

poles are given either in terms of right ascension ( α) and decli- 

nation ( δ), or ecliptic longitude ( λ) and latitude ( β). For an orbit 

pole ̂ n specified by { I, �}, and spin pole ̂  s specified by { λ, β}, the 

obliquity is given by 

cos [ ε] = ̂

 n ·̂ s = cos [ I] sin [ β] − sin [ I] cos [ β] sin [ λ − �] (12) 

This calculation is relatively simple because both sets of coordi- 

nates are given in the same (ecliptic) frame. If the spin pole is 

given in terms of right ascension and declination, the calculation 

is somewhat more complicated, since there is an additional trans- 

formation from equatorial to ecliptic frames. 

In consideration of long term evolution of orbits, using secu- 

lar variation models ( Brouwer and van Woerkom, 1950; Knezevic, 

1986; Laskar, 1988 ), for orbital evolution, it is common (though not 

necessary) to use the invariable plane of the solar system, in place 

of the ecliptic plane. The invariable plane is, by definition, perpen- 

dicular to the solar system angular momentum vector, and is close 

to Jupiter’s orbit plane ( Souami and .Souchay, 2012 ). 

The advantage of using the invariable plane, in secular varia- 

tion models, is that it makes the motions appear somewhat sim- 

pler. However, since the orbital element initial conditions are most 

often specified in terms of ecliptic elements, we will use that 

frame for our secular models. In particular, we use the ecliptic and 

equinox of J20 0 0. 

3. Shorter period effects 

In this paper we will mainly be examining secular variations in 

the orbital elements of Ceres and Pallas. We believe that our secu- 

lar variation model accurately reproduces behavior on time scales 

from 10 3 to 10 6 years, or perhaps even somewhat longer. However, 

due to a near 18:7 mean motion resonance with Jupiter, both Ceres 

and Pallas experience significant orbital perturbations on shorter 

time scales. In the discussion below, we use orbital elements ob- 

tained from the JPL Horizons web site, spanning 900 years, from 

1600 to 2500 CE. Over that time span, the mean orbital periods 

of Ceres, Pallas, and Jupiter are given in Table 1 . The JPL Horizons 

web site can be used to obtain osculating Keplerian elements. The 
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