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a b s t r a c t 

We show that Ceres’ measured degree-2 zonal gravity, J 2 , is smaller by about 10% than that derived as- 

suming Ceres’ rotational flattening, as measured by Dawn, is hydrostatic. Irrespective of Ceres’ radial den- 

sity variation, as long as its internal structure is hydrostatic the J 2 predicted from the shape model is con- 

sistently larger than measured. As an explanation, we suggest that Ceres’ current shape may be a fossil 

remnant of faster rotation in the geologic past. We propose that up to ∼7% of Ceres’ previous spin angu- 

lar momentum has been removed by dynamic perturbations such as a random walk due to impacts or a 

loss of satellite that slowed Ceres spin as it tidally evolved outward. As an alternative, we also consider 

a formal degree-2 admittance solution, from which we infer a range of possible non-hydrostatic contri- 

butions to J 2 from uncompensated, deep-seated density anomalies. We show that such density anomalies 

could be due to low order convection or upwelling. The normalized moments-of-inertia derived for the 

two explanations – faster paleospin and deep-seated density anomalies – range between 0.353 ± 0.009 

and 0.375 ± 0.001 for a spherically equivalent Ceres, which can be used as constraints on more complex 

Ceres interior models. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

The Dawn mission has accurately determined the mass and 

shape of Ceres. Ceres’ gravity field has been determined to at least 

degree and order 8 ( Park et al., 2016 ) and the topography to much 

higher degree and order ( Ermakov et al., 2015 ). Significantly, the 

degree-2 zonal gravity ( J 2 ) calculated from Ceres’ shape assum- 

ing a uniform interior density (304 × 10 –4 ) is substantially larger 

than the measured value (265 × 10 –4 ), which implies a degree of 

central mass concentration or differentiation ( Park et al., 2016 ). 

Moreover, differentiated Ceres models that assume its zonally av- 

eraged shape is hydrostatic also predict a greater J 2 value than ob- 

served ( Ermakov et al., 2015; Mao and McKinnon, 2016 ). Equiva- 

lently, Ceres possesses 2.5 km of excess flattening, i.e., the differ- 

ence between its physical flattening and its less oblate “geoid.” In 

this paper, we suggest two solutions to reconcile Ceres’ measured 

J 2 and rotational flattening. 

We argue that an ice-rich crust or layer of varying thickness, 

whether isostatically supported or not, is an unlikely explanation 
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for Ceres’ excess equatorial bulge, although it is plausible (if not 

likely) for higher degrees and orders on Ceres ( Ermakov et al., 

2015, 2016 ). We instead suggest that Ceres may have rotated faster 

in the past (by up to about 7%), and that the shape observed today 

is partly a fossil remnant, because a faster rotation increases geoid 

flattening for fixed J 2 ( Murray and Dermott, 1999 ). We later discuss 

mechanisms by which Ceres’ original spin period may have evolved 

and decreased. Alternatively, deep seated but uncompensated den- 

sity anomalies, such as caused by convection or upwelling, could 

explain Ceres’ unusual gravity/topography relationship at degree-2 

(the sectorial admittance is negative; Ermakov et al. (2016) ). Ulti- 

mately, we conclude that some combination of a faster paleospin 

and deeper, uncompensated mass or masses is the most likely ex- 

planation overall, the models for which set useful limits on Ceres’ 

average moment of inertia. 

2. Methods 

We begin by revisiting internal models of Ceres based on its 

shape and density alone (i.e., as in Thomas et al. (2005) ), updat- 

ing our earlier results ( Mao and McKinnon, 2016 ) and illustrat- 

ing our general methods. Ceres’ best-fit shape is slightly triaxial 

( ±1 km along the equator; Park et al. (2016) ), but we model Ceres 

as an oblate spheroid because of its relatively rapid spin and lack 

of tidal interaction with other large bodies, with a mean equatorial 
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Table 1 

Ceres physical parameters. 

Parameters Value Reference 

GM 62.6285 ± 0.0 0 08 km 

3 s –2 Park et al. (2016) 

Spin Period ( P ) 9.074170 ± 0.0 0 0 0 02 h Chamberlain et al. (2007) 

Equatorial Radius ( a ) a 483.1 ± 0.2 km Park et al. (2016) 

Equatorial Radius ( b ) 481.0 ± 0.2 km Park et al. (2016) 

Polar Radius ( c ) 445.9 ± 0.2 km Park et al. (2016) 

Bulk Density ( ρ) b 2162.1 ± 1.6 kg m 

–3 Calculated 

Surface Gravity ( g ) 0.28 m s –2 Calculated 

J 2 (2649.9 ± 0.1) × 10 –5 Park et al. (2016) 

J 4 –(171.2 ± 0.6) × 10 –5 Park et al. (2016) 

C 22 
c 23.83 × 10 –5 Park et al. (2016) 

a We take the mean equatorial radius to be 482.0 ± 0.2 km. 
b Bulk density is formally calculated from mass and ellipsoidal volume, and is 

slightly different from that in Park et al. (2016) , where ρ = 2162 ± 8 kg m 

–3 is based 

on a three-dimensional stereo-derived shape model. 
c Principal axis value. 

radius ā = 482.0 ± 0.2 km. Adopting published parameters ( Table 1 ), 

we apply a sixth-order recursive method based on the ellipsoidal 

theory of figures from Tricarico (2014) and construct two-layer 

models of Ceres in hydrostatic equilibrium. This method assumes 

uniform density layers and ellipsoidal level surfaces, and is accu- 

rate for Ceres’ oblateness and rotation rate ( Tricarico, 2014 ). Simi- 

lar methods have been applied to icy satellites such as Enceladus 

( McKinnon, 2015; Beuthe et al., 2016 ). We assume a range of outer 

shell densities from 920 to 20 0 0 kg m 

–3 , representing the spec- 

trum from pure water ice to a mixture of hydrated silicates, salts, 

and/or clathrates (e.g., Bland et al., 2016 ). We calculate the cor- 

responding shape eccentricity ( e ≡
√ 

1 − (c/ ̄a ) 2 ) and gravity terms 

for each shell density and average shell thickness 

d = 

3 
√ 

ā 2 c − 3 
√ 

a c 2 c c , (1) 

where c and ā are Ceres’ polar and average equatorial radius, re- 

spectively, and c c and a c are the corresponding radii of the aligned 

ellipsoidal core. Acceptable solutions are found when the exterior 

size and shape ( ̄a , c ) match that of Ceres. This is essentially the 

procedure of Thomas et al. (2005) , but now the numerical method 

is more accurate for Ceres’ spin rate and oblateness, and most crit- 

ically, Dawn gravity now serves as an independent check and con- 

straint. 

3. Results 

3.1. Differentiated internal structures of Ceres from hydrostatic shape 

modeling 

Fig. 1 shows our shape-fitting solutions for Ceres at its current 

spin period, with estimated uncertainties. The average shell thick- 

ness d ranges from 11 to 89 km ( Fig. 1 a), and corresponds to a 

large but rather low density core. The precision of Dawn measure- 

ments apparently formally rules out a completely homogeneous 

Ceres, based on shape alone , although a trivially thin icy shell is 

permitted within the uncertainties. Considering shape uncertain- 

ties, a less flattened or more flattened Ceres, determined by appro- 

priately varying the equatorial and polar radii by ±3 σ ( ±0.6 km), 

still has a finite average shell thickness for our minimum shell 

density solutions, as indicated by the two dashed lines in Fig. 1 a. 

From these results, we would conclude that Ceres is a differenti- 

ated body, albeit a very much less differentiated one when com- 

pared with previous results ( Ermakov et al., 2015; Park et al., 2016 ). 

Whereas average shell thickness is quite insensitive to assumed 

shell density, especially when the latter is < 1500 kg m 

–3 , outer 

shell thickness does increase rapidly for higher shell density solu- 

tions. Our nominal (central) solutions point to a shell thickness less 

than 100 km, which indicates a limited separation of ice from rock 

in Ceres’ evolution. This is consistent with the evidence for limited 

viscous relaxation of large craters on Ceres ( Bland et al., 2016 ). 

That Ceres appears to only be partially differentiated is not a 

novel conclusion (see Park et al. 2016 ). What is remarkable is that 

the degree of differentiation appears to be so small in these solu- 

tions. For a pure ice shell, the outer layer is only ∼10 km thick on 

average ( Fig. 1 a). Put another way, the shape of Ceres is nearly that 

appropriate to a uniform density oblate (or Maclaurin) spheroid. 

This can also be seen from the zonal gravity J 2 calculated from 

our hydrostatic shape models, 2953 × 10 –5 ( Fig. 1 c), which is only 

3% less than that of a homogeneous Ceres, 3033 × 10 –5 (calculated 

from its oblate ellipsoidal shape) or 3040 × 10 –5 (calculated from 

a full three-dimensional shape model; Park et al., 2016 ), all these 

J 2 values being referenced to a mean radius of 470 km. Within 

Ceres’ shape and density uncertainties, Ceres could essentially be 

a Maclaurin spheroid, or very near to it ( Fig. 2 ). Indeed, if shape 

were all that mattered, and Thomas et al. (2005) had the Dawn 

results for Ceres’ shape and density, they would have likely con- 

cluded that Ceres was undifferentiated. 

What is more important in Fig. 1 is that the J 2 calculated from 

our hydrostatic shape (and interior) models is substantially greater 

than the actual value measured by Dawn, (2649.9 ± 0.1) × 10 –5 

( Park et al., 2016 ). The uncertainty in our shape-based J 2 determi- 

nation ( Fig. 1 c) does not allow agreement between Ceres’ shape 

and its measured J 2 , even if Ceres is less oblate than nominal by 

the full 3 σ in ā and c , in which case the outer shell is relatively 

thicker, and the core relatively denser for a given shell density. In 

other words, the solutions in Fig. 1 cannot be the correct ones, be- 

cause they do not predict the correct J 2 . 

The difference between the measured and model hydrostatic J 2 
implies (in the context of an oblate planetary body) that Ceres 

must be centrally condensed or differentiated to a larger degree 

than indicated by Fig. 1 . This is also implied from a comparison 

of Ceres’ J 2 with that estimated from a uniform Ceres ( Park et al., 

2016 ), but what is important here is that Ceres’ J 2 cannot be ex- 

plained with a hydrostatic, 2-layer, ellipsoidal level surfaces model 

(or indeed with any hydrostatic interior model, as we will show 

below). In other words, Ceres’ zonal second-degree gravity is non- 

hydrostatic at the 10% level. 

3.2. Ceres’ rotational geoid 

That Ceres’ ellipsoidal shape cannot be fully hydrostatic can also 

be seen by directly calculating the shape of its exterior equipoten- 

tial surface (or geoid). Setting the exterior potential equal at the 

equator and pole yields the following recursive relation for the flat- 

tening of a biaxial, oblate level surface 

a 

c 
= 1 + 

[
1 

2 

+ 

(
a 

c 

)3 
]

J 2 + 

ω 

2 a 3 

2 GM 

+ ..., (2) 

where a and c are the equatorial and polar radii, G is the gravi- 

tational constant, M is Ceres’ mass, ω = 2 π / P , where P equals the 

spin period, and for this and the following equation, J 2 and J 4 
are normalized to a ( ≡ ā for this calculation, or 482.05 km), not 

the mean radius (470 km). For Ceres this yields a / c = 1.07716 ( a –

c = 34.4 km) vs. the observed a / c = 1.08107 (or a – c = 36.15 km). If 

we extend Eq. (2) to degree-4 (uniform, biaxial ellipsoidal bodies 

contribute to all even J n ), 

a 

c 
= 1 + 

[
1 

2 

+ 

(
a 

c 

)3 
]

J 2 + 

[
−3 

8 

+ 

(
a 

c 

)5 
]

J 4 + 

ω 

2 a 3 

2 GM 

+ ..., (3) 

which yields a / c = 1.07536 ( a – c = 33.6 km) vs. the observed 

a / c = 1.08107 ( a – c = 36.15 km). Extending this relation to J 6 and 

beyond is not yet warranted because the change in a – c would 

be at the 100 m level and Ceres’ published gravity field is insuffi- 

ciently accurate beyond degree 5 ( Park et al., 2016 ). 
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