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a b s t r a c t 

Using astrometric observations spanning more than a century and including a large set of Cassini data, 

we determine Saturn’s tidal parameters through their current effects on the orbits of the eight main and 

four coorbital Moons. We have used the latter to make the first determination of Saturn’s Love number 

from observations, k 2 = 0.390 ± 0.024, a value larger than the commonly used theoretical value of 0.341 

(Gavrilov & Zharkov, 1977), but compatible with more recent models (Helled & Guillot, 2013) for which 

the static k 2 ranges from 0.355 to 0.382. Depending on the assumed spin for Saturn’s interior, the new 

constraint can lead to a significant reduction in the number of potential models, offering great opportu- 

nities to probe the planet’s interior. In addition, significant tidal dissipation within Saturn is confirmed 

(Lainey et al., 2012) corresponding to a high present-day tidal ratio k 2 / Q = (1.59 ± 0.74) ×10 −4 and im- 

plying fast orbital expansions of the Moons. This high dissipation, with no obvious variations for tidal 

frequencies corresponding to those of Enceladus and Dione, may be explained by viscous friction in a 

solid core, implying a core viscosity typically ranging between 10 14 and 10 16 Pa.s (Remus et al., 2012). 

However, a dissipation increase by one order of magnitude at Rhea’s frequency could suggest the exis- 

tence of an additional, frequency-dependent, dissipation process, possibly from turbulent friction acting 

on tidal waves in the fluid envelope of Saturn (Ogilvie & Lin, 2004; Fuller et al. 2016). 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Tidal effects among planetary systems are the main driver in 

the orbital migration of natural satellites. They result from physical 

processes arising in the interior of celestial bodies, not observable 

necessarily from surface imaging. Hence, monitoring the Moons’ 
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motions offers a unique opportunity to probe the interior proper- 

ties of a planet and its satellites. In common with the martian and 

jovian systems ( Lainey et al., 2007, 2009 ), the orbital evolution of 

the saturnian system due to tidal dissipation can be derived from 

astrometric observations of the satellites over an extended time 

period. In that respect, the presence of the Cassini spacecraft in 

orbit around Saturn since 2004 has provided unprecedented astro- 

metric and radio-science data for this system with exquisite pre- 

cision. These data open the door for estimating a potentially large 
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number of physical parameters simultaneously, such as the gravity 

field of the whole system and even separating the usually strongly 

correlated tidal parameters k 2 and Q . 

The present work is based on two fully independent analyses 

(modeling, data, fitting procedure) performed at IMCCE and JPL, 

respectively. Methods are briefly described in Section 2 . Section 3 

provides a comparison between both analyses as well as a global 

solution for the tidal parameters k 2 and Q of Saturn. Section 4 de- 

scribes possible interior models of Saturn compatible with our 

observations. Section 5 discusses possible implications associated 

with the strong tidal dissipation we determined. 

2. Material and methods 

Both analyses stand on numerical computation of the Moons’ 

orbital states at any time, as well as computation of the derivatives 

of these state vectors (see Section 2.1 ) with respect to: (i) their ini- 

tial state for some reference epoch; (ii) many physical parameters. 

Tidal effects between both the Moons and the planet are intro- 

duced by means of the amplitude of the tidal bulge and its time 

lag associated to dissipation processes. The gravitational effect of 

the tidal bulge is classically described by the tidal Love number k 2 
and the tidal ratio k 2 / Q . The Love number k 2 is defined as the ratio 

between the gravitational potential induced by the tidally-induced 

mass redistribution and the tide-generating potential. As the inte- 

rior does not respond perfectly to the tidal perturbations, because 

of internal friction applied on tides, there is a time lag between the 

tide-raising potential and the tidally-induced potential. The torque 

created by this lag is proportional to the so-called tidal ratio k 2 / Q . 

The amplitude and lag of the tide potential can also be described 

using a complex representation of the Love number, where the real 

part correspond to the part of the potential aligned with the tide- 

raising potential, while the imaginary part describes the dissipa- 

tive part (see also Section 4 ). The factor Q, often called the quality 

factor ( Kaula 1964 ), or the specific dissipation function, Q 

−1 , in its 

inverse form, is inversely proportional to the amount of energy dis- 

sipated by tidal friction in the deformed object. Coupled tidal ef- 

fects such as tidal bulges raised on Saturn by one Moon and acting 

on another are considered. Besides the eight main Moons of Sat- 

urn, the coorbital Moons Calypso, Telesto, Polydeuces, and Helene 

are integrated in both studies. 

Although the two tidal parameters k 2 and Q often appear inde- 

pendently in the equations of motion, the major dynamical effect 

by far is obtained when the tide raised by a Moon on its primary 

acts back on this same Moon. In this case, only the ratio k 2 / Q is 

present as a factor for the major term, therefore preventing an in- 

dependent fit of k 2 and Q . However, the small co-orbital satellites 

raise negligible tides on Saturn and yet react to the tides raised on 

the planet by their parent satellites (see Figure in Appendix A.1 ). 

This unique property allows us to make a fit for k 2 that is almost 

independent of Q (see Appendix A.1 ). In particular, we find that the 

modeling of such cross effects between the coorbital moons allows 

us to obtain a linear correlation between k 2 and Q of only 0.03 

( Section 3 and Appendix A.4 ). Thanks to the inclusion of Telesto, 

Calypso, Helene and Polydeuces, we can estimate k 2 essentially 

around the tidal frequencies of Tethys and Dione. 

2.1. IMCCE’s approach 

The IMCCE approach benefits from the NOE numerical code 

that was successfully applied to the Mars, Jupiter, and Uranus sys- 

tems ( Lainey et al., 20 07, 20 08, 20 09 ). It is a gravitational N-body 

code that incorporates highly sensitive modeling and can gener- 

ate partial derivatives needed to fit initial positions, velocities, and 

other parameters (like the ratio k 2 / Q ) to the observational data. 

The code includes (i) gravitational interaction up to degree two in 

the spherical harmonics expansion of the gravitational potential for 

the satellites and up to degree 6 for Saturn ( Jacobson et al. 2006 ); 

(ii) the perturbations of the Sun (including inner planets and the 

Moon by introducing their mass in the Solar one) and Jupiter using 

DE430 ephemerides; (iii) the Saturnian precession; (iv) the tidal ef- 

fects introduced by means of the Love number k 2 and the quality 

factor Q . 

The dynamical equations are numerically integrated in a Sat- 

urncentric frame with inertial axes (conveniently the Earth mean 

equator J20 0 0). The equation of motion for a satellite P i can be ex- 

pressed as ( Lainey et al. 2007 ) 

�̈
 r i = −G ( m 0 + m i ) � r i 

r i 3 
+ 

N ∑ 

j =1 , j � = i 
G m j 

(
�
 r j − �

 r i 

r i j 
3 

− �
 r j 

r j 3 

)

+ G ( m 0 + m i ) ∇ i U 
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Here, � r i and 

�
 r j are the position vectors of the satellite P i and a 

body P j (another satellite, the Sun, or Jupiter) with mass m j , sub- 

script 0 denotes Saturn, U 

k̄ ̂ l 
is the oblateness gravity field of body 

P l at the position of body P k , GR are corrections due to General Rel- 

ativity ( Newhall et al. 1983 ) and 

�
 F T 
l̄ ̂ k 

the force received by P l from 

the tides it raises on P k . This force is equal to ( Lainey et al. 2007 ) 

�
 F T 
l̄ ̂ k 

= −3 k 2 G m l 
2 R 

5 �t 

r kl 
8 

(
2 

�
 r kl ( � r kl · � v kl ) 

r kl 
2 

+ ( � r kl × �
 � + 

�
 v kl ) 

)
(2) 

where � r kl = 

�
 r k − �

 r l , � v kl = d � r kl /dt, � �, R , and �t being the instanta- 

neous rotation vector, equatorial radius and time potential lag of 

P k , respectively. The time lag �t is defined by 

�t = T arctan ( 1 / Q ) / 2 π (3) 

where T is the period of the main tidal excitation. For the tides 

raised on Enceladus, T is equal to 2 π / n ( n being Enceladus’ mean 

motion) as we only considered the tide raised by Saturn. For Sat- 

urn’s tidal dissipation, T is equal to 2 π /2( �- n i ) where � is the spin 

frequency of Saturn and n i is the mean motion of the tide raising 

saturnian Moon P i . �t depends on the tidal frequency and on Q , 

therefore it is not a constant parameter. 

It is clear from the second term in the right hand side of Eqs. 

( 2 ) and ( 3 ) that k 2 and Q are completely correlated. To separate 

both parameters, we consider the action on any Moon of the tides 

raised on Saturn by all other Moons (see also Appendix A.1 ). Ne- 

glecting tidal dissipation in that case provides the extra terms 
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For an unspecified parameter c l of the model that shall be fitted 

(e.g. � r ( t 0 ) , d � r /dt( t 0 ) , Q…), a useful relation is ( Lainey et al. 2012 

and references therein) 
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where � F i is the right hand side of Eq. (1) multiplied by m i . Partial 

derivatives of the solutions with respect to initial positions and ve- 

locities of the satellites and dynamical parameters are computed 

from simultaneous integration of Eqs. (5) and (1) . 
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