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a b s t r a c t 

Icy satellites that contain subsurface oceans require sufficient thermal energy to prevent the liquid por- 

tion of their interiors from freezing. We develop a numerical finite difference model to solve the Laplace 

Tidal Equations on a sphere in order to simulate tidal flow and thermal energy dissipation in these 

oceans, neglecting the presence of an icy lid. The model is applied to Titan and Enceladus, where we ex- 

plore how Rayleigh (linear) and bottom (quadratic) drag terms affect dissipation. The latter drag regime 

can only be applied numerically. We find excellent agreement between our results and recent analytical 

work. Obliquity tide Rossby-wave resonant features become independent of ocean thickness under the 

bottom drag regime for thick oceans. We show that for Titan, dissipation from this Rossby-wave reso- 

nance can act to dampen the rate of outward orbital migration by up to 40% for Earth-like values of 

bottom drag coefficient. Gravity-wave resonances can act to cause inward migration, although this is un- 

likely due to the thin oceans required to form such resonances. The same is true of all eccentricity tide 

resonances on Enceladus, such that dissipation becomes negligible for thick oceans under the bottom 

drag regime. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Thermal energy in the interiors of outer Solar System icy satel- 

lites is supplied primarily by radiogenic decay and tidal dissipation. 

Radiogenic decay plays a role in large icy satellites with a signifi- 

cant portion of silicate material in their interiors ( Hussmann et al., 

2006 ). This role, however, diminishes with decreasing mass of sil- 

icate material. Small satellites have a high surface area to volume 

ratio, and consequently thermal energy generated from radioactive 

decay is lost on a timescale much less than the age of the Solar 

System. Yet, several small and medium sized icy satellites have 

confirmed global oceans, suggesting greater interior heating than 

that provided by radiogenic decay alone. 

This work focuses on Titan and Enceladus. Several interior mod- 

els and lines of evidence suggest Titan contains a subsurface ocean 

( Baland et al., 2014; Bills and Nimmo, 2011; Iess et al., 2012; 

Mitri et al., 2014; Sohl et al., 2003; 2014 ). Enceladus also shows 

strong evidence of a liquid ocean beneath its surface. Originally it 

was thought that this liquid reservoir was localised beneath the 

South Polar Terrain (SPT) of the satellite (e.g., Collins and Good- 

man, 2007 ). However, recent modelling of the degree-2 gravity 

field was consistent with a global ocean with greatest thickness 
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beneath the SPT, although such models are non-unique ( Iess et al., 

2014; McKinnon, 2015 ). Most recently, the large forced libration of 

Enceladus indicates a decoupling of the icy shell from its interior, 

and thus the presence of a global ocean ( Thomas et al., 2016 ). 

This paper is intended to introduce and verify a new numeri- 

cal model for solving thin shell fluid dynamics in planetary bodies. 

The model is therefore useful for investigating ocean dissipation in 

a variety of icy satellites. Assumptions made in the development of 

the numerical code reflect those made in the semi-analytical mod- 

els to which our results are compared. This ensures the most accu- 

rate verification of the numerical model. We also introduce bottom 

drag into the model, an extension that is only possible numerically 

and in simplified scaling analysis ( Chen et al., 2014 ). We explore 

this drag regime for oceans on Titan and Enceladus. 

1.1. Tidal dissipation 

Any satellite that passes through a varying gravitational poten- 

tial will experience some form of tidal dissipation. The time vary- 

ing gravitational potential may be a result of the satellite’s orbital 

eccentricity and/or obliquity, as well as any non-synchronous ro- 

tation. For a satellite in (near) synchronous rotation, the gravita- 

tional tidal potential will vary periodically over the satellite’s orbit. 

The changing potential does mechanical work on the satellite, and 

a portion of this work is converted to thermal energy. This process 
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is known as tidal dissipation. As long as sufficient orbital or rota- 

tional energy remains in the system (in the form of eccentricity, 

obliquity or non-synchronous rotation), tidal dissipation will occur. 

Both the solid and fluid regions of a satellite will experience 

tidal dissipation. Despite this, and the overwhelming evidence for 

and abundance of subsurface oceans in the icy satellites, the ma- 

jority of dissipation studies have focused on only solid-body tides, 

(e.g., Moore and Schubert, 20 0 0; Tobie et al., 2005; Roberts and 

Nimmo, 2008; Beuthe, 2013 ). Most terrestrial tidal dissipation oc- 

curs within the oceans, and while Earth has a complex dynamic 

between tidally-induced ocean flow and its continents, it illustrates 

the importance of considering ocean dissipation. 

The effect of ocean dissipation in outer planet satellites was 

first considered for Titan by Sagan and Dermott (1982) , who an- 

alytically derived expressions to estimate dissipated energy in a 

global hydrocarbon surface ocean. In doing so they attempted to 

explain Titan’s relatively high eccentricity. The same problem was 

then approached numerically by Sears (1995) , who solved the 

Laplace Tidal Equations to derive time averaged estimates of dis- 

sipated energy within a hydrocarbon ocean of varying thicknesses. 

Sears’ numerical model is the basis for the model described in this 

paper. 

More recently, Tyler (20 08 , 20 09 , 2011 , 2014) has done exten- 

sive work on ocean dissipation, showing that thermal energy re- 

leased through interior fluid motions can theoretically prevent a 

subsurface liquid from freezing. By exploring how ocean thick- 

ness and drag coefficient affect dissipation, Tyler (2011) discov- 

ered ocean dissipation resonances. These resonances tend to oc- 

cur for oceans of a particular thickness, where oceanic planetary 

waves resonantly interact with the periodic tidal forcing, allow- 

ing enhanced tidal flow and consequently significant tidal dissi- 

pation. Matsuyama (2014) developed a similar model to that used 

by Tyler (2011) , adding the effects of ocean loading, self-attraction, 

and deformation of the solid regions. These effects were shown to 

alter the position and magnitude of these dissipative resonances. 

Kamata et al. (2015) modelled the effects of an icy shell on Love 

number resonances, but did not include any ocean dynamics. 

Tyler (2011) , Matsuyama (2014) , and Chen et al. (2014) all 

considered Rayleigh (linear) drag in their models. 

Chen et al. (2014) also developed a set of scaling laws to model 

ocean dissipation in the bottom (quadratic) drag regime. The 

numerical model presented in this work is capable of solving 

the LTEs using both Rayleigh and bottom drag, as is typical in 

terrestrial ocean dissipation studies ( Egbert and Ray, 2001; Jayne 

and Laurent, 2001; Jeffreys, 1921; Taylor, 1920; Zahel, 1977 ). In 

Sears (1995) , a very complex approach was used in order to 

study ocean dissipation on Titan. Three drag terms were included 

simultaneously in his model: Rayleigh and bottom drag, as well 

as eddy induced viscosity. Each one of these relies on unknown 

coefficients, for which Sears (1995) chose one value for each. 

This greatly over-constrains his results. Here we employ a far 

more idealised approach, specifically investigating only Rayleigh or 

bottom drag in sequence over a vast parameter space. This allows 

us to understand how each of these drag models affect ocean 

dissipation. These two drag regimes are briefly described below. 

1.2. Rayleigh drag 

A linear formulation of drag was first introduced as the 

Guldberg-Mohn approximation of virtual internal friction in 1876 

( Neumann, 1968 ). Now known as Rayleigh drag, the approxima- 

tion describes drag within a fluid that is proportional and oppo- 

site to the fluid’s velocity. That is, the drag force per unit mass 

F d = −αu , where α is some drag time scale known as the coeffi- 

cient of Rayleigh drag with units of s −1 . The flow velocity is u . 

Rayleigh drag can be thought of as a macroscopic description of 

drag between adjacent fluid elements in a moving liquid. 

1.3. Bottom drag 

Terrestrial ocean dissipation studies often employ a drag model 

that scales with the square of the fluid’s velocity. This quadratic 

dependence of drag on flow velocity is referred to as bottom drag 

( Gill, 1982 ), and arises due to turbulent flow interacting with some 

bottom boundary, such as the ocean floor. Large tangential shear 

stresses associated with this interface generate a turbulent bound- 

ary layer where there is a significant transfer of momentum from 

the flow. While such turbulence cannot be resolved at the scale of 

planetary ocean simulations, the bottom drag coefficient c D is em- 

pirically derived to include the frictional effect of this turbulence 

at the planetary scale. 

In this work we investigate the effects of bottom drag on 

ocean dissipation for both Titan and Enceladus, structuring the 

paper as follows. Firstly, we introduce our numerical method in 

Section 2 , describing the grid structure and numerical solver as 

well as its current limitations. We then apply this model to both 

Titan ( Section 3 ) and Enceladus ( Section 4 ) in turn for each drag 

model, examining how dissipation differs between each case. The 

Rayleigh drag results are compared to semi-analytical solutions of 

Matsuyama (2014) . We also compare the bottom drag results to 

scaling laws developed by Chen et al. (2014) . 

2. Methodology 

This section describes some of the theory and methods involved 

in this work. The governing equations of the numerical model and 

their applicability are discussed in Sections 2.1 and 2.2 . We then 

provide analytical expressions for the degree-2 tidal potential in 

Section 2.3 . Following this, descriptions of the discretisation and 

numerical scheme are outlined in Section 2.5 , with a summary of 

our simulations in Section 2.6 . 

2.1. Laplace tidal equations 

The equations of motion and continuity that describe ocean 

tidal flow in the shallow water limit are known as the Laplace 

Tidal Equations (LTEs) ( Lamb, 1932 ). The main assumption leading 

to this set of equations is that radial (vertical) ocean flow is negli- 

gible when compared to lateral flow, reducing the problem to two 

dimensions. This is indeed a good approximation at the planetary 

scale, where lateral flow length scales span significantly greater 

distances than the thickness of an ocean. The conservation of mass 

( Eq. (1) ) and momentum ( Eq. (2) ) that make up the LTEs, includ- 

ing both Rayleigh and bottom drag, are given as ( Matsuyama, 2014; 

Sears, 1995; Tyler, 2008 ): 

∂ t η + ∇ · ( h u ) = 0 , (1) 

∂ t u + 2 � × u + αu + 

c D 
h 

| u | u + g∇η = (1 + k 2 − h 2 ) ∇U 2 . (2) 

Eq. (1) consists of two terms. The first is the time rate of change 

of vertical sea surface displacement, η, about some equilibrium 

level, h 0 , where the total ocean thickness, h = h 0 + η. The second 

term is the divergence of the ocean thickness multiplied by the 

surface velocity vector, u ≡ ( u, v ), where u and v are the eastward 

and northward velocity components, respectively. Clearly, mass di- 

vergence and convergence is balanced by the vertical motion of the 

ocean free surface. 

The term on the right hand side of Eq. (2) is an applied force 

per unit mass. ∇U 2 is the gradient of the degree-2 tide raising po- 

tential, discussed in Section 2.3 . It is multiplied by Love’s reduc- 

tion factor, 1 + k 2 − h 2 . Love’s first number, k 2 , is a proportionality 
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