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In this paper, we use a sixth order Legendre series expansion to approximate the mean annual insola- 

tion by latitude of a planet with obliquity angle β , leading to faster computations with little loss in the 

accuracy of results. We discuss differences between our method and selected computational results for 

insolation found in the literature. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Incoming solar radiation is an important input in many earth 

systems models. This physical quantity is needed in areas rang- 

ing from low-dimensional energy balance models (e.g. the Budyko 

energy balance model ( Budyko, 1969 )) to large global circulation 

models (GCMs), e.g. NASA’s ModelE AR5 (available on NASA’s Mod- 

elE website), or earth systems models (ESMs). It is common prac- 

tice to compute insolation by latitude using computer algorithms. 

For example, NASA’s latitudinal insolation calculations for ModelE 

AR5 rely on three FORTRAN subroutines that 1) calculate Earth’s 

orbital parameters (eccentricity, obliquity, and longitude of perihe- 

lion) as a function of year, 2) calculate distance to the sun and dec- 

lination angle as functions of time of year and orbital parameters, 

and 3) calculate the time integrated zenith angle as a function of 

the declination angle and the time interval of the day. 

These computer calculations are useful for models with 

latitude-longitude grids (as is typical in GCM’s or ESM’s); however, 

to convert this information to useable data for other modeling sce- 

narios is not always straightforward. For example, in the Budyko–

Widiasih energy balance model, one must know the annual aver- 

age insolation as a function of latitude in order to make use of 

the model ( Widiasih, 2013 ). Obtaining such a function by fitting 

a polynomial, a trigonometric function, or a spline to data points 

given by a computer program obscures the true relationship be- 

tween insolation and latitude and may introduce errors that, when 

integrated over time scales of millennia, give meaningless results. 
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In the following section we give the results of an integration 

method used in several sources ( Dobrovolskis, 2013; McGehee and 

Lehman, 2012; Ward, 1974 ) to find the mean annual insolation by 

latitude for any planet as a function of obliquity and eccentricity 

and present our results, a sixth-degree approximation to the inso- 

lation distribution. In Section 3 we give examples of this approxi- 

mation to the insolation distributions of Earth, Mars, and Pluto. We 

conclude with a discussion of the applicability of these approxi- 

mations and some interesting mathematical conjectures requiring 

further investigation. 

2. Mean annual insolation function 

It has been shown in several sources that one can calculate (as 

a function of latitude) the mean annual insolation of a swiftly ro- 

tating planet using only first principles ( Dobrovolskis, 2013; McGe- 

hee and Lehman, 2012; Ward, 1974 ). Following the notation in 

McGehee and Lehman (2012) , one can express mean annual inso- 

lation I as a function of eccentricity e , obliquity β , and sine of lati- 

tude y by finding the insolation at any point on the Earth’s surface, 

integrating over the course of one orbital period, then integrating 

over all longitudes (see McGehee and Lehman, 2012 , Section 4). 

Their results are 

I (e, y, β) = Q(e ) s ( y, β) 

where the distribution of insolation across the sine of the latitude 

is given by 

s ( y, β) = 

2 

π2 

∫ 2 π

0 

√ 

1 − ( 
√ 

1 − y 2 sin β sin γ − y cos β) 2 dγ (1) 

(where γ is longitude) and the magnitude of insolation is given 
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Fig. 1. Insolation distributions for Earth and Pluto, both actual (dashed) and various approximations (solid) are shown. In this figure we show (a) second-degree approxi- 

mations ( σ 2 ), (b) fourth-degree approximations ( σ 4 ), and (c) sixth-degree approximations ( σ 6 ). It is not until the sixth-degree approximation that we capture the slight ‘W’ 

shape of Pluto’s insolation distribution. 

by 

Q(e ) = 

Q 0 √ 

1 − e 2 
. (2) 

where Q 0 is the global annual average insolation ( McGehee and 

Lehman, 2012 ). We see that their analysis is general enough to ap- 

ply to any planet orbiting a star with a spin period much shorter 

than its orbital period, as long as the appropriate physical param- 

eters are known. 

In the appendix we present a recipe for approximating the dis- 

tribution function s ( y, β) as a polynomial in y and β to any desired 

degree of accuracy. In Section 3 we show that the sixth-degree ap- 

proximation is sufficient for most purposes, and is given by 

σ6 ( y, β) = 1 − 5 

8 

p 2 ( cos β) p 2 ( y ) − 9 

64 

p 4 ( cos β) p 4 ( y ) 

− 65 

1024 

p 6 ( cos β) p 6 ( y ) (3) 

where the p k ’s are the Legendre polynomials 

p 2 ( y ) = 

(
3 y 2 − 1 

)
/ 2 

p 4 ( y ) = 

(
35 y 4 − 30 y 2 + 3 

)
/ 8 

p 6 ( y ) = 

(
231 y 6 − 315 y 4 + 105 y 2 − 5 

)
/ 16 

It should be noted that the polynomial σ 6 ( y , β) is the best least- 

mean-square approximation to the function s ( y , β). There may be 

better uniform approximations, but that possibility is not explored 

here. 

North (1975) explicitly gives a second-degree approximation for 

the insolation distribution for the Earth as 

ˆ σ2 ( y ) = 1 − . 482 p 2 ( y ) , 

stating that the approximation to the actual distribution is accurate 

to within 2%. North notes that this approximation was first given in 

Chýlek and Coakley (1975) as a linear interpolation of the insola- 

tion distribution, although no closed-form formula is given in that 

paper. Since this approximation was computed only for the cur- 

rent obliquity of the Earth, it cannot be used to compute changes 

due to the Milankovitch cycles nor can it be used for other plan- 

ets. We suggest that the polynomial approximation, σ 6 given above 

be used instead of the integral form of the insolation distribution 

function because the approximation is more computationally effi- 

cient and sufficiently accurate to capture the qualitative character- 

istics of the actual distribution function. 

3. Planetary examples 

The formula for σ 6 ( y, β) can be truncated to produce second- 

and fourth-degree polynomials in y and cos β in the form of 

σ2 N ( y, β) = 1 + 

N ∑ 

n =1 

q 2 n (β) p 2 n ( y ) 

for N = 1 , 2 , 3 . 

As stated in the previous section, North used a second-degree 

approximation in his analysis of a simple climate model of the 
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