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A B S T R A C T

In this work, values of the fractal dimension and the connectivity index characterizing the structure of Hall
conductivities on the night side of the auroral ionosphere are derived in general form. Restrictions imposed on
fractal structure of the ionospheric conductivity are analyzed in terms of the percolation of the ionospheric Hall
currents. It is shown that the structure of ionospheric Hall conductivities can be described as asymptotically path-
connected fractal. This result is supported by analysis of typical structure observed in auroral electron precipi-
tation which are also the main source of ionization on the night side of the ionosphere. It is demonstrated that
crossing the precipitation region in the direction perpendicular to the multiple arcs system, one should observe
the structure of the precipitation which looks like a generalized Cantor set.

1. Introduction

The understanding of fractal geometry of Nature can hardly be
overrated. The term ”fractal”was introduced in science by Mandelbrot to
quantify the geometric features of a variety of natural objects whose fine-
scale structure is statistically self-similar (Mandelbrot, 1982). Unlike
Euclidean geometry, he refused the implicit assumption about the
smoothness of the object. Many object are in fact characterized by well-
defined power-law spatial correlation function. In many cases, such
power-law behavior could be associated with the fine-scale structuring in
the system and the hierarchy of structures on many spatial scales could be
then approximated by geometric sets termed fractals (Mandelbrot, 1982;
Feder, 1988). Application of the fractal approach have led to consider-
able progress in many branches of science including problems of space
physics, for instance, the study of processes on the Sun, solar wind,
interplanetary magnetic field turbulence, stochastic substorm dynamics,
Earth‘s distant magnetotail, the auroral structures and many others (for
example, see (Zelenyi and Milovanov, 2004; Milovanov et al., 2001;
Ohtani et al., 1995; Kozelov, 2003; Kozelov et al., 2004; Chang et al.,
2010; Mogilevsky, 2001; Abel et al., 2009)).

Also, recently dynamic properties of the percolating networks near
the critical threshold have received a good deal of attention. This insight
along with the substantial advances in the geometric formulation of the
critical phenomena have opened new perspectives on the topological
methods in the theory of percolation (Stauffer and Aharony, 1994;

Nakayama et al., 1994). This has led to an possibility of the geometric
description of the dynamical phenomena involving the formation of the
percolating structures. This approach has important advantages, because
it allows one to consider a wider class of structures than has traditionally
discussed. The geometric parameters of percolated clusters near the
percolation threshold depend weakly on the details of the small-scale
structure, which makes the percolation theory a promising tool for
studying the properties of the medium. The relevance of the topological
ideas applied to the auroral ionosphere has been recently demonstrated
(Chernyshov et al., 2013b, a).

In the present paper, we use a geometric approach based on fractal
theory and percolation theory to describe the Hall conductivity of the
auroral zone ionosphere. Actually this study is a continuation of work
initiated in the previous articles (Chernyshov et al., 2013b, a) where
well-known in the literature empirical relations (Robinson et al., 1987;
Spiro et al., 1982) were applied for determination of fractal parameters in
auroral ionosphere and main attention was paid to the Pedersen con-
ductivity. The obtained theoretical results for the Pedersen conductivity
were in good agreement with electromagnetic field data from the satel-
lites and ground-based observations of aurora. Using Spiro's relations
(Chernyshov et al., 2013a) and Robinson's relations (Chernyshov et al.,
2013b), different fractal results were determined for Hall conductivities.
Therefore, it is necessary to find solutions in general form and to perform
an analysis of obtained results. The Hall conductivity is important
parameter in the auroral ionosphere because Hall current flows in auroral
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arcs (Haerendel et al., 1996; Marghitu et al., 2011). This is the subject of
this article.

The structure of the paper is the following. The next Section 2 is
theoretical part of the article where expressions for the fractal dimension
and the connectivity index for the Hall conductivity of the auroral
ionosphere are specified. Comparison and confirmation of these theo-
retical estimations with experimental observations are carried out in
Section 3. Discussion and concluding remarks are given in the last Sec-
tion 4.

2. Fractal estimations of the ionospheric Hall conductivity

For the beginning we should remind the basic terms that are needed
for following derivations. The introduction of the concept of fractals by
Benoit B. Mandelbrot at the beginning of the 1970's represented a major
revolution in various areas of physics (Mandelbrot, 1982). The problems
posed by phenomena involving fractal structures may be very difficult,
but the formulation and geometric understanding of these objects has
been simplified considerably. Fractal structures are statistically self-
similar. The statistically self-similar geometry appears in the power-law
behavior of the average ”mass” density of the fractal sets and this
power-law behavior is contained in the factor adf�E , here a is the length
scale for the fractal sets and a is between two characteristic lengths; the
microscopic distance and the correlation length (Mandelbrot, 1982). The
parameter df in the is the so-called fractal dimension (or Hausdorff
dimension) of the set and E is the dimensionality of the embedding
Euclidean space, which is always not less than df . Note that in usual
Euclidean geometry, the fractal dimension df coincides with the value of
E so that the corresponding average density is constant. But the fractal
dimension df is not the only geometric parameter required for the com-
plete description of the self-similar fractals. The other important
parameter is the index of connectivity θ. Index of connectivity describes
the scaling behavior of the averaged ”mass” density of a fractal set and θ
quantifies how the elementary structural units inside the set are ”glued”
together to form the entire fractal object. In Euclidean geometry, the
index θ is zero since df coincides with the Euclidean dimensionality E.
The index of connectivity θ define the shape of a fractal object, and can be
different for fractals even with equal values of the fractal dimension.
Precise definition of θ could be given by using the concept of the geodesic
line, that is, the shortest line connecting two elementary structural units
of the fractal.

The E-region of nightside Earth's ionosphere at altitudes of 80� 150
km and at latitudes where the major part of energetic particles precipi-
tation is observed and these particles result in auroras are considered. In
this region, particle precipitation is the main cause of ionization in the
nightside and, consequently, of increased conductivity. Using typical
values of electron and ion gyro-frequencies and also the maximum values
of the collision frequencies in E-layer of ionosphere, the expressions for
the Hall conductivity in the E-region ionosphere are simplified and take
the following form:

σH ¼ qn
B

∝ n (1)

where, n, q and B indicate electron density, electron charge and
geomagnetic field strength. In the absence of other ionization sources the
electron density is determined by ionization by auroral particles. The rate
of ionization caused by auroral particles collisions with atmospheric
gases varies smoothly along the magnetic field lines; therefore, the
nontrivial fractal structure can form only in the spatial distribution
transverse to the magnetic field.

By usual assumption of thin ionosphere we can go to height-
integrated ionosphere (Swift, 1972) and to height-integrated conduc-
tivity

P
H
¼ ∫ dzσH , where z is the vertical coordinate. In the general case,

the height-integrated Hall conductivity
P
H
ðW ; εÞ at given magnetic field

line is a function of the average energy W and the energy flux ε of
precipitating electrons. The dependence on the average energy is simply
understandable because more energetic electrons penetrate deeper to the
Hall current layer. According empirical models (Robinson et al., 1987;
Spiro et al., 1982) this dependence has a power law form ∝Wz with a bit
different power index z. The dependence on energy flux has a form ∝

ffiffiffi
ε

p
due to recombination features at ionospheric E-region altitudes.

In important case of the region of intense field-aligned currents both
W and ε depend on the current intensity. The field-aligned current jjj
generates transversal currents in the ionosphere and the corresponding
transverse electric fields E⊥, so we have jjj≃∇⊥ðΣ⋅E⊥Þ (Wiltberger
et al., 2009).

If a is the transverse characteristic scale, the change of potential drop
in the ionosphere at this scale is Δφ⊥ � jjja2H=ΣH , and the change of field-
aligned parallel potential drop is Δφjj � jjj (Lyons, 1981). So, we can
obtain the following relation for the Hall conductivity:

Δφ⊥

Δφjj
∝

a2H
ΣH

(2)

When the potential drop is much greater that the thermal energy of
the source plasma, the energy flux ε is given by ε ¼ � eΔφjjjjj, and so, if
the linear current-voltage relation holds, the energy flux is (Lyons et al.,
1979; Lysak, 1990)

ε ∝ Δφ2
jj (3)

Note, that W≃Δφjj, so, we have the reasons to consider the general
case of empirical relation for the height-integrated Hall conductivity ΣH

in the following manner:

ΣH ∝ Wm (4)

here m is the free parameter, that is, scaling index in empirical approx-
imation. It is assumed that σH � ΣH∝Wm∝ðΔφjjÞm∝ðΔφ⊥ΣH=a2HÞm (see
(Chernyshov et al., 2013b) for more details).

Now we need two additional facts about fractal sets and percolation.
Firstly, the transverse potential drop is proportional to resistanceΔφ⊥∝R,
and the scaling of the resistance of fractal set with length is R∝aζ , where
ζ ¼ 2þ θ� df is the resistance exponent (Havlin and Ben-Avraham,
1987), was derived earlier in the literature using arguments that the
resistance on fractal set is changed significantly in comparison with the
regular case. This is a consequence of the fact that in fractal structures
holes of all sizes up to the size of the system exist. In other words, due to
the presence of holes, bottlenecks and dangling ends in the fractal, the
motion of a wandering particle is changed. Besides, since due to self-
similarity, these holes, bottlenecks and dangling ends occur on all
length scales, the motion of the wandering particle is changed on all
length scales. Therefore, Fick's diffusion law is no longer valid and it is
necessary to use a more general formula for the mean square displace-
ment. The critical indexes of resistance and diffusion can be related by
the Einstein equation. For this reason, it is obtained the estimation for
resistance and critical resistance index (see (Bunde and Havlin, 2012)).
Secondary, the criticality condition of the percolation threshold (the
Alexander-Orbach conjecture) ensuing from the universal value theorem
(Alexander and Orbach, 1982; Zelenyi and Milovanov, 2004) is

2df
2þ θ

¼ Λ≈
4
3

(5)

where, the parameter Λ characterizes the geometry of the percolation
transition and determines the minimal fractional number of degrees of
freedom that a particle must have to pass through a region under
consideration in the process of random walks.

We will use this condition in form of inequality to estimate the values
of fractal parameters that are necessary for the ionospheric current
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