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A B S T R A C T

We present a new tool for spatiotemporal pattern decomposition and utilize this new tool to decompose
spatiotemporal patterns of monthly mean precipitation from January 1957 to May 2015 in Taihu Lake Basin,
China. Our goal is to show that this new tool can mine more hidden information than empirical orthogonal
function (EOF). First, based on EOF and empirical mode decomposition (EMD), the time series which is an
average over the study region is decomposed into a variety of intrinsic mode functions (IMFs) and a residue by
means of EMD. Then, these IMFs are supposed to be explanatory variables and a time series of precipitation in
every station is considered as a dependent variable. Next, a linear multivariate regression equation is derived
and corresponding coefficients are estimated. These estimated coefficients are physically interpreted as spatial
coefficients and their physical meaning is an orthogonal projection between IMF and a precipitation time series
in every station. Spatial patterns are presented depending on spatial coefficients. The spatiotemporal patterns
include temporal patterns and spatial patterns at various timescales. Temporal pattern is obtained by means of
EMD. Based on this temporal pattern, spatial patterns at various timescales will be gotten. The proposed tool
has been applied in decomposition of spatiotemporal pattern of monthly mean precipitation in Taihu Lake
Basin, China. Since spatial patterns are associated with intrinsic frequency, the new and individual spatial
patterns are detected and explained physically. Our analysis shows that this new tool is reliable and applicable
for geophysical data in the presence of nonstationarity and long-range correlation and can handle nonstationary
spatiotemporal series and has the capacity to extract more hidden time-frequency information on spatiotem-
poral patterns.

1. Introduction

Decomposition of spatiotemporal pattern is a significant problem in
geography, both in theoretical analysis and in practical application,
playing an important role in analyzing and predicting environmental
change (Li et al., 2013). The changes of geographical processes in
spatiotemporal dimensions are often observed and recorded.
Commonly, for a specified observational station, one variable should
be required at least to record this change with time. For p observational
stations, there are thus p spatiotemporal series. For convenience, a
spatiotemporal series with series length of N is denoted as {x(i, t)}
(1≤i≤p, 1≤t≤N).

For the purpose of decomposing spatiotemporal patterns that might
be linked to physical mechanisms (Dommenget and Latif, 2002), an

empirical orthogonal function (EOF) (Pearson, 1901; Kim et al., 1970)
is commonly applied. EOF has been found to be one of the most
important and effective methods for spatiotemporal pattern decom-
position and has been widely applied in climatic fields (Hamlington
et al., 2015; Jackson and Mound, 2010; Li et al., 2012; Lin and Wang,
2006; Pritchard and Somerville, 2009; Wei and Zhang, 2010). A
number of useful findings have resulted from this method. To date, a
variety of improved, extended, and adjusted approaches, such as an
extended EOF (Weare and Nasstrom, 1982), rotated EOF (Cheng et al.,
1995; Lian and Chen, 2012), complex EOF (Rasmusson et al., 1981;
Barnett, 1985), wavelet EOF (Nayagam et al., 2009), and distinct EOF
(Dommenget, 2007) (all based on EOF), have been established to
improve understanding.

EOF might decompose spatiotemporal series into two parts through
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a reduction of data dimensionality:x i t V i m Z m t( , ) = ∑ ( , ) ( , )m
m p

=1
=

(Pearson, 1901). The first part, V(i, m), is the spatial one, and the
other, Z(m, t), is the temporal one. For the series {x(i, t)}, there exists
xxT≡ x i t∑ ( , )t

t N
=1
= 2=(μ2(i)+σ2(i))N, where μ(i)= x i t N∑ ( , )/t

t N
=1
= and σ2(i)

= x i t μ i N∑ ( ( , ) − ( )) /t
t N
=1
= 2 are designated as the mean of the series and

the variance of the series, respectively. Although either stationary or
nonstationary (Kantelhardt et al., 2002) spatiotemporal series can be
decomposed into various spatiotemporal patterns, none of these
patterns have time-frequency information. Furthermore, for stationary
spatiotemporal series, since μ and σ remain unchanged statistically
with an increasing series length (Shen et al., 2016), the decomposed
spatiotemporal patterns can be directly utilized to predict a variable. In
contrast, for nonstationary spatiotemporal series, since μ and σ are
closely related to series length (Kantelhardt et al., 2002), the nonlinear
change xxT≡(μ2(i)+σ2(i))N against series length appears. Thus, spatio-
temporal patterns decomposed by EOF cannot be directly used to
predict variables.

Spatiotemporal series in the presence of nonstationarity are in fact
ubiquitous in nature and society (Malik et al., 2016). It is thus of great
importance theoretically to discover an approach that can decompose
temporal patterns of nonstationary series. Fortunately, empirical mode
decomposition (EMD), proposed by Huang et al. (1998), is an effective
method that can decompose nonlinear oscillatory patterns into a
variety of intrinsic model function (IMF) components, based purely
on the observed-data properties without relying on the concept of
stationarity. This decomposition can directly extract the energy asso-
ciated with various intrinsic timescales, which are the most important
parameters of the series. A brief description of the procedure is as
follows: first, all the local extrema of {x(t)} are identified, and then all
local maxima and minima are linked by a cubic spline to form the
upper and lower envelopes. Their mean is denoted as m1, and the
difference between the data and m1 under a specified requirement,
defined as the first IMF component, is extracted. Repeating this
process, we can achieve a decomposition of {x(t)} into IMFi (1≤i≤n)
and a residue, rn, which can be either the mean trend or a constant.
The maximum count of IMF is log2N−1. Further analysis verifies that
the cross-relation between IMFi and IMFj (1≤i, j≤n, i≠j) is not
orthogonal (Huang et al., 1998) and that their cross-coefficient is
about 10−2–10−3 in magnitude. Under a low mathematical accuracy
requirement, these IMFs are considered approximately orthogonal
(Huang et al., 1998). For the purpose of obtaining fully orthogonal
IMFs in mathematics to avoid energy leakage, the Gram-Schmidt
method is applied.

EMD is well suited for one-dimensional series, either stationary or
nonstationary. However, for p series with identical lengths of N in p
geographical locations, the method that is used to directly decompose
spatiotemporal patterns through EMD is important. Sun et al. (2008)
calculated yearly-surface-mean temperature IMFs of 760 meteorologi-
cal stations in China, obtained IMFs of temperature series for every
station, and presented spatiotemporal patterns for yearly-surface-mean
temperature through cluster analysis. Despite the fact that spatiotem-
poral patterns were identified, neither correlation between two or more
series nor spatial distribution structure of the stations was considered.

In our study, we take the critical ideas of EMD and EOF to propose
a new tool for decomposing spatiotemporal patterns. The new tool can
address two challenges: to identify spatial patterns associated with the
characterization of time and frequency and to handle nonstationary
series. In order to test the capabilities of the approach, a theoretical
analysis was carried out and some experiments were conducted to
decompose spatiotemporal patterns of the monthly mean precipitation
from January 1957 to May 2015 in Taihu Lake Basin, China. The
results show that the approach is capable of identifying the spatio-
temporal patterns of monthly mean precipitation series in the presence
of nonstationarity through decomposition.

Our research differs from previous studies in the following key
ways: 1) the spatial patterns decomposed by the new tool are associated

with time frequency and 2) the new tool has the potential for
application in a variety of research fields. Additionally, two new and
individual spatiotemporal patterns are identified in the real dataset of
monthly mean precipitation in Taihu Lake Basin.

Our objectives are to verify that the new tool is better at discovering
the spatial patterns associated with time-frequency information and is
capable of handling series in the presence of nonstationarity. Our
findings will contribute to current knowledge of spatiotemporal pattern
decomposition with nonstationary series and has the potential to
predict variable change in the future.

2. Theoretical framework of the new tool

In this section, the new tool, a time-frequency analytical method to
analyze spatial patterns at different timescales (TFSP), is defined and
its theoretical framework is described. The decomposition of spatio-
temporal pattern based on EOF is first briefly discussed, and then two
hypotheses are given. Next, a theoretical analysis and derivation are
provided and the new tool is presented.

The decomposition of spatiotemporal pattern using EOF (Pearson,
1901; Kim et al., 1970) occurs as follows: suppose that p variables X1,
X2, …, Xi, …, Xp (1≤i≤ p), with an identical series-length of N, are used
to describe the changes in monthly mean precipitation with time in p
meteorological observation stations within a geographical region.

To achieve the decomposition of spatiotemporal pattern, a spatio-
temporal series Xi≡{x(i, t)} (1≤i≤p, 1≤t≤N) is often assumed to be
decomposed into two parts: a spatial one and a temporal one, i.e.,
x i t V i m Z m t( , ) = ∑ ( , ) ( , )m

m p
=1
= . The spatial part V(i, m) designates the

association degree between the ith observational station and the mth
spatial field, and the temporal part Z(m, t) represents the changes in
monthly mean precipitation with time in the mth spatial field. Under
the constraints of VVT=1 and ZZT=Λ, the formulation of xxT=VZZTVT is
given, where V is an eigenvector, the ith eigenvector is (V(i, 1), V(i, 2),
…, V(i, m), …, V(i, p))T, and Λ is a diagonal matrix with λ1, λ2, …, λp.
Lagrange multiplier method is applied to estimate V(i, m) and Z(m, t)
by means of an ordinary least square (OLS) and the optimal solutions
of V(i, m) and Z(m, t) are obtained.

The key concepts of EOF are that 1) a spatiotemporal series can be
decomposed into a sum over products of a spatial part and a temporal
part, that 2) the spatial part can illustrate spatial differentiation for a
given spatial field, that 3) the temporal part can depict the variable
change with time for a fixed spatial field, that Z(m, t) against Z(m’, t) is
orthogonal, i.e., Z m t Z m t∑ ( , ) ( ′, )t

t N
=1
= =δmm’λm, δmm’ is Kronecker

denotation.
To arrive at a new approach, two hypotheses are given in our study.

Absorbing the EOF's critical idea, naturally, the first supposition is that
a spatiotemporal series can be decomposed into a sum over products of
k spatial fields Ve(i, m) and k temporal fields Ze(m, t). The correspond-
ing formulation is shown in Eq. (1):

∑x i t V i m Z m t( , ) = ( , ) ( , ),
m

m
e e=1

=∞
(1)

where Ze(m, t) is a complete orthogonal function. Clearly, Eq. (1)
indicates that the spatial field Ve(i, m) is independent of time, and that
the temporal field Ze(m, t) is independent of space, and that Ve(i, m)
varies depending on spatial locations (observational stations) when m
is fixed. When finite orthogonal functions are chosen, Eq. (1) can be
written into Eq. (2):

∑ ∑

∑

x i t V i m Z m t V i m Z m t

V i m Z m t ξ i t

( , ) = ( , ) ( , ) + ( , ) ( , )

= ( , ) ( , ) + ( , ),

m

m k
e e m k

m
e e

m

m k
e e

=1

=

= +1

=∞

=1

=
(2)

where ξ(i, t) is a residual (truncated error) that is cause by Ve(i, m) and
Ze(m, t) (m > k).

We denote X t x i t p( ) = ∑ ( , )/i
i p
=1
= as the mean of precipitation over

all observational stations. Hence,
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