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A B S T R A C T

Examples are presented of using a signal processing technique that allows equidistant frequencies to be detected
in broad-band oscillation spectra. This technique is based on analyzing the amplitude and phase correlation
functions (APCF) of the oscillations. Equidistant frequencies can be detected in any broad-band spectrum based
on the presence of periodic peaks related to such frequencies in APCF functions. An example of processing 1D
resonator oscillations serves to show that the relationship between the eigenfrequencies in the spectrum and the
APCF function peaks is similar to that between the optical grating slits and the interference line image on the
screen. The proposed signal processing technique allows the difference between two adjacent frequencies of
such a "grating" to be measured. The same analogy is true for a 2D resonator. In the latter case, two equidistant
eigenfrequency gratings are shown to be present in the spectrum. Each grating corresponds to the
eigenfrequencies of a 1D standing wave along each of the coordinates of a 2D resonator. The effect of small
non-equidistance of the eigenfrequencies on the distortion and the location of the correlation function peaks is
examined. The examples of processing two 1-h intervals of geomagnetic pulsation records are used to
demonstrate the applicability of the APCF technique for real recorded magnetospheric oscillations.

1. Introduction

This study should be seen as a methodological supplement and
development of Polyakov (2014), as well as to earlier papers by
Polyakov and Potapov (2001) and Polyakov (2010) that formulated
and developed a new, original technique to analyze the harmonic
structure of oscillatory processes. As an application, the APCF techni-
que has already been successfully employed in investigating the
structure of standing seismic waves in the Earth's shells (Polyakov,
2010) and in determining the first harmonic frequency in various 1D
standing MHD waves in the plasmasphere and at its boundary
(Polyakov, 2014). The results of these applications show that the
technique and its software may prove useful in obtaining additional
information in research projects requiring spectrum analysis.

Let us examine a segment of almost monochromatic oscillations
containing small random variations in amplitude and phase. In this
case, each separate oscillation in the record differs slightly from the
others in shape, amplitude, and period. According to Gudzenko (1961),
such oscillations can be regarded as a periodically non-stationary
random process for which an ergodic theorem generalization is valid.
This means that, from the ensemble of individual observations in the
record segment, we can derive one, average, oscillation that recurs
periodically throughout the segment. The algorithms used to determine

the mean oscillation, as well as the amplitude and phase fluctuations
were suggested by Gudzenko (1962). These algorithms were applied to
the new spectral analysis method by Polyakov (2010, 2014).

The end product of the APCF technique are the amplitude and
phase correlation functions of oscillations rather than mean oscilla-
tions themselves. The APCFs are defined as the difference between the
amplitudes and phases of quasi-monochromatic and mean oscillations.
When calculating the correlation functions, we used ensemble aver-
aging for individual oscillations. The APCF method employs these
functions to analyze the structure of eigenfrequencies in a spectrum of
the input signal.

Unlike the above-mentioned papers, this research relies on an
updated APCF technique that enables processing, not only quasi-
monochromatic, but also any broad-band signals. The updated analysis
algorithm allows us to detect the eigenfrequencies of various resonators
in signals of natural origin - such as seismic vibrations or geomagnetic
disturbances - with much greater accuracy than previous methods.
Major changes to the processing procedures are associated with the
filtering of an input signal (see Section 2). The use of a selected spectral
filter function allows us to isolate a quasi-monochromatic signal from
any broadband spectrum. The frequency of this signal is determined by
one of the parameters of the filter function. Post-processing procedures
(determining the mean oscillation, amplitude and phase correlation
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functions) remain unchanged (see Polyakov (2010, 2014)).
Polyakov (2010, 2014) has shown that correlation functions

obtained by the APCF method are periodic sequences of repetitive
peaks for broadband oscillations in a resonator or waveguide. Those
papers give a universal empirical formula that relates the interval
between adjacent peaks to the frequency of a quasi-monochromatic
signal or the difference between adjacent eigenfrequencies of a
resonator. Using this formula, we conducted a harmonic analysis of
the spectra of broadband signals. For detailed comments to this
formula, see Section 2 (Formula (4)).

This paper is mainly a methodological study. It aims at determining
some laws that are characteristic for the processing technique and the
end product of the APCF program. Section 3 presents further argu-
ments in favor of formula (4): an analogy with the optical diffraction
grating. It also gives a more precise qualitative definition for the
parameters in its right-hand side. Sections 3 and 4 examine the effect of
a weak non-equidistance of eigenfrequencies for 1D and 2D-resona-
tors.

An important problem is related to 2D standing waves. It was
demonstrated in Polyakov (2010) and Polyakov (2014) that for a 2D
resonator the interval between the APCF function peaks was defined by
relation (4). The only difference from a 1D resonator is that the
difference eigenfrequencies assume, not one, but two different values.
Each value corresponds to the eigenfrequencies of a 1D standing wave
along one of the coordinates of the 2D resonator. We cannot regard a
2D standing wave as a superposition of two separate 1D waves. The
eigenfrequencies of such a wave are simultaneously determined by two
harmonic numbers and must be very non-equidistant. How did the
eigenfrequencies of two 1D waves find themselves in relation (4), which
was obtained for a 2D standing wave? Section 4 resolves this problem.

Section 5 presents the results for real records of geomagnetic
disturbances processed with an updated version of the APCF software.

Unlike Polyakov (2010) and Polyakov (2014), all the figures in this
paper compare the processing technique results to the original signal
spectrum. This has proved useful for revealing many peculiarities of the
APCF functions. For example, Figs. 3 and 4 below demonstrate how
non-equidistant eigenfrequencies in the spectrum lead to distortions in
the correlation function peaks and to changes in the interval between
two adjacent peaks.

2. Detection of harmonic structures in broad band signals

This paper uses updated software. The changes concern the
procedures related to the input signal filtration. The filtered narrow-
band signal is represented as an ideal sinusoid, whose amplitude and
phase fluctuations are determined by the remaining spectral region.

Moreover, procedures are added to determine the presence of
repetitive peaks on correlation functions. Here is a brief list of the
basic steps involved in the processing. A more detailed description of
the algorithms used in the main program for signal processing is given
in Gudzenko (1962).

2.1. Filtering conversion

To start preprocessing, we convert the input signal into a complex-
valued function whose imaginary part is equal to zero. We use the FFT
procedure to obtain a Fourier function. The real and imaginary parts of
this function are then multiplied by the filter spectrum function F f( ).
Upon an inverse Fourier transformation, we will consider the real part
to be the filtered signal. The frequency dependence of the filter function
is shown in Fig. 1. The narrow rectangle at frequency f0, its width equal
to one step of the discrete Fourier function, allows us to identify
monochromatic oscillations in any wideband signal. The rest of the
spectrum in the Δf band (provided a = 0.01) is converted into small
fluctuations, which make these oscillations deviate from their ideal
shape. As a result a quasi-monochromatic signal is produced.

Therefore, the procedure of determining the mean oscillation is also
applicable for it.

The position of the f0 frequency on the horizontal axis can vary
within the Δf band. An advantage of this approach is that it enables the
parameters f0, Δf and a to be varied at will. Fig. 1 presents a possible
variant of their mutual location. For our processing technique, it is
much more efficient than Marmet's filter (Marmet, 1979) used earlier
in Polyakov (2010) and Polyakov (2014). Section 3 below shows how
these parameters affect the final processing results.

2.2. Mean oscillation, amplitude and phase fluctuations

Let us address the time segment containing 100 periods T f= 1/0 0.
This time segment moves in increments of 20T0 from the start to the
end of the original signal time. All the subsequent processing proce-
dures are applied to the filtered oscillations that are in this time
segment after each increment.

The discrete values of deviation from zero xi and time ti become
dimensionless after the conversion: x x A t π f t→ / ; → 2i i i i0 , where A
is the mean oscillation amplitude. Next, the derivative y dx dt= /i i is
computed, and the points x y( , )i i are superimposed on the surface of the

rectangular phase coordinates x , x
•
. Each oscillation, in these co-

ordinates, is a closed trajectory (cycle) that differs little from a
circumference of unity radius. In total, 100 cycles are obtained. Each
cycle differs slightly from the rest. The Gudzenko technique (1962) is
used to find the mean cycle that corresponds to the mean oscillation.

For each point x y( , )i i of the initial cycles, we determine the phase of
the mean oscillation Θi and the deviation along the normal direction
from the mean cycle n Θ( )i . The tangential deviations of the point are
γ Θ Θ t( ) = −i i i. The normal and the tangential deviations n and γ
represent the deviations of the oscillation amplitude and phase xi from
the amplitude and the phase of the mean oscillation.

It should be emphasized that the filtered oscillations at f0 only serve
as a "basis" to determine the amplitude and phase fluctuations. These
oscillations per se do not take any part in any further procedures. The
next stage deals only with fluctuations that do not contain frequency f0
in their spectrum.

2.3. Correlation functions

For the discrete series n Θ( )i , γ Θ( )i and for the derivatives Θ( )dn
dΘ i ,

Θ( )dγ
dΘ i , the cross- and auto-correlation functions are computed using

Fig. 1. Filter spectral function.
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