
New Astronomy 52 (2017) 35–47 

Contents lists available at ScienceDirect 

New Astronomy 

journal homepage: www.elsevier.com/locate/newast 

Generation of a supervised classification algorithm for time-series 

variable stars with an application to the LINEAR dataset 

K.B. Johnston 

∗, H.M. Oluseyi 

Florida Institute of Technology, Physics and Space Sciences Dept., Melbourne, Florida, 32901, United States 

h i g h l i g h t s 

• We present a new supervised classification methodology for the analysis of time series variables. 
• We apply this analysis to the LINEAR survey dataset. 
• An anomaly detection algorithm is developed, as are improved estimates of performance. 
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a b s t r a c t 

With the advent of digital astronomy, new benefits and new problems have been presented to the mod- 

ern day astronomer. While data can be captured in a more efficient and accurate manner using digital 

means, the efficiency of data retrieval has led to an overload of scientific data for processing and storage. 

This paper will focus on the construction and application of a supervised pattern classification algorithm 

for the identification of variable stars. Given the reduction of a survey of stars into a standard feature 

space, the problem of using prior patterns to identify new observed patterns can be reduced to time- 

tested classification methodologies and algorithms. Such supervised methods, so called because the user 

trains the algorithms prior to application using patterns with known classes or labels, provide a means 

to probabilistically determine the estimated class type of new observations. This paper will demonstrate 

the construction and application of a supervised classification algorithm on variable star data. The classi- 

fier is applied to a set of 192,744 LINEAR data points. Of the original samples, 34,451 unique stars were 

classified with high confidence (high level of probability of being the true class). 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

With the advent of digital astronomy, new benefits and new 

challenges have been presented to the modern day astronomer. 

While data is captured in a more efficient and accurate manner 

using digital means, the efficiency of data retrieval has led to an 

overload of scientific data for processing and storage. This means 

that more stars, in more detail, are captured per night; but increas- 

ing data capture begets exponentially increasing data processing. 

Database management, digital signal processing, automated image 

reduction, and statistical analysis of data have all made their way 

to the forefront of tools for the modern astronomer. Astro-statistics 

and astro-informatics are fields which focus on the application and 

development of these tools to help aid in the processing of large 

scale astronomical data resources. 
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This paper will focus on one facet of this budding area, the con- 

struction and application of a supervised pattern classification al- 

gorithm for the identification of variable stars. Given the reduction 

of a survey of stars into a standard feature space, the problem of 

using prior patterns to identify new observed patterns can be re- 

duced to time-tested classification methodologies and algorithms. 

Such supervised methods, so called because the user trains the al- 

gorithms prior to application using patterns with known classes 

or labels, provides a means to probabilistically determine the es- 

timated class type of new observations. These methods have two 

large advantages over hand-classification procedures: the rate at 

which new data is processed is dependent only on the computa- 

tional processing power available, and the performance of a super- 

vised classification algorithm is quantifiable and consistent. Thus 

the algorithm produces rapid, efficient, and consistent results. 

This paper will be structured as follows. First, the data and 

feature space to be implemented for training will be reviewed. 

Second, we will discuss the class labels to be used and the 

meaning behind them. Third, a set of classifiers (multi-layer per- 

ceptron, random forest, k-nearest neighbor, and support vector 
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machine) will be trained and tested on the extracted feature space. 

Fourth, performance statistics will be generated for each classifier 

and a comparing and contrasting of the methods will be discussed 

with a “champion” classification method being selected. Fifth, the 

champion classification method will be applied to the new ob- 

servations to be classified. Sixth, an anomaly detection algorithm 

will be generated using the so called one-class support vector ma- 

chine and will be applied to the new observations. Lastly, based on 

the anomaly detection algorithm, and the supervised training algo- 

rithm a set of populations per class type will be generated. The re- 

sult will be a highly reliable set of new populations per class type 

derived from the LINEAR survey. 

1.1. Related work 

The idea of constructing a supervised classification algorithm 

for stellar classification is not unique to this paper (see Dubath 

et al. 2011 for a review), nor is the construction of a classifier 

for time variable stars. Methods pursued include the construction 

of a detector to determine variability (two-class classifier Barclay 

et al. 2011 ), the design of random forests for the detection of pho- 

tometric redshifts in spectra Carliles et al. (2010) , the detection 

of transient events Djorgovski et al. (2012) , and the development 

of machine-assisted discovery of astronomical parameter relation- 

ships Graham et al. (2013) . Debosscher (2009) explored several 

classification techniques for the supervised classification of variable 

stars, quantitatively comparing the performed in terms of compu- 

tational speed and performance which they took to mean accu- 

racy. Likewise, other efforts have focused on comparing speed and 

robustness of various methods (e.g. Blomme et al. 2011; Pichara 

et al. 2012; Pichara and Protopapas 2013 ). These methods span 

both different classifiers and different spectral regimes, including 

IR surveys ( Angeloni et al. 2014 and Masci et al. 2014 ), RF surveys 

( Rebbapragada et al., 2011 ), and optical ( Richards et al., 2012 ). 

2. Data 

The procedure outlined in this paper will follow the standard 

philosophy for the generation of a supervised pattern classifica- 

tion algorithm as professed in Duda et al. 2012 and Hastie et al. 

(2004) , i.e. exploratory data analysis, training and testing of su- 

pervised classifier, comparison of classifiers in terms of perfor- 

mance, application of classifier. Our training data is derived from 

a set of three well known variable star surveys: the ASAS survey 

( Pojmanski et al., 2005 ), the Hipparcos survey ( Perryman et al., 

1997 ), and the OGLE dataset ( Udalski et al., 2002 ). Data used for 

this study must meet a number of criteria: 

1. Each star shall have differential photometric data in the u-g-r- 

i-z system 

2. Each star shall have variability in the optical channel (band) 

that exceeds some fixed threshold with respect to the error in 

amplitude measurement 

3. Each star shall have a consistent class label, should multiple 

surveys address the same star 

2.1. Sample representation 

These requirements reduce the total training set down to 2,054 

datasets with 32 unique class labels. The features extracted are 

based on Fourier frequency domain coefficients ( Deb and Singh, 

2009 ), statistics associated with the time domain space, and dif- 

ferential photometric metrics; for more information see Richards 

et al. (2012) for a table of all 68 features with descriptions. The 

32 unique class labels can be further generalized into four main 

groups: eruptive, multi-star, pulsating, and “other” ( Debosscher, 

Table 1 

Broad classification of variable 

types in the training and testing 

dataset. 

Type Count % Dist 

Multi-star 514 0 .25 

Other 135 0 .07 

Pulsating 1179 0 .57 

Erupting 226 0 .11 

Table 2 

Unique classification of variable types in the training and testing 

dataset. 

Class type % Dist Class type % Dist 

a. Mira 8 .0% m. Slowly Puls. B 1 .5% 

b1. Semireg PV 4 .9% n. Gamma Doradus 1 .4% 

b2. SARG A 0 .7% o. Pulsating Be 2 .4% 

b3. SARG B 1 .4% p. Per. Var. SG 2 .7% 

b4. LSP 2 .6% q. Chem. Peculiar 3 .7% 

c. RV Tauri 1 .2% r. Wolf-Rayet 2 .0% 

d. Classical Cepheid 9 .9% r1. RCB 0 .6% 

e. Pop. II Cepheid 1 .3% s1. Class. T Tauri 0 .6% 

f. Multi. Mode Cepheid 4 .8% s2. Weak-line T Tauri 1 .0% 

g. RR Lyrae FM 7 .2% s3. RS CVn 0 .8% 

h. RR Lyrae FO 1 .9% t. Herbig AE/BE 1 .1% 

i. RR Lyrae DM 2 .9% u. S Doradus 0 .3% 

j. Delta Scuti 6 .5% v. Ellipsoidal 0 .6% 

j1. SX Phe 0 .3% w. Beta Persei 8 .7% 

k. Lambda Bootis 0 .6% x. Beta Lyrae 9 .8% 

l. Beta Cephei 2 .7% y. W Ursae Maj. 5 .9% 

2009 ), the breakdown of characterizations for the star classes fol- 

lows the following classifications: 

• Pulsating 

– Giants: Mira, Semireg RV, Pop. II Cepheid, Multi. Mode 

Cepheid 

– RR Lyrae: FO, FM, and DM 

– “Others”: Delta Scuti, Lambda Bootis, Beta Cephei, Slowly 

Pulsating B, Gamma Doradus, SX Phe, Pulsating Be 
• Erupting: Wolf-Rayet, Chemically Peculiar, Per. Var. SG, Herbig 

AE/BE, S Doradus, RCB and Classical T-Tauri 
• Multi-Star: Ellipsoidal, Beta Persei, Beta Lyrae, W Ursae Maj. 
• Other: Weak-Line T-Tauri, SARG B, SARG A, LSP, RS Cvn 

The a priori distribution of stellar classes is given in Table 1 for 

the broad classes and in Table 2 for the unique classes: 

It has been shown ( Rifkin and Klautau, 2004 ) that how the clas- 

sification of a multi-class problem is handled can affect the perfor- 

mance of the classifier; i.e. if the classifier is constructed to process 

all 32 unique classes as the same time, or if 32 different classifiers 

(detectors) are trained individually and the results are combined 

after application, or if a staged approach is best where a classi- 

fier is trained on the four broad classes first, then a secondary 

classifier is trained on the unique class labels in each broad class 

( Debosscher, 2009 ). The a priori distribution of classes, the num- 

ber of features to use, and the number of samples in the training 

set are key factors in determining which classification procedure to 

use. This dependence is often best generalized as the “curse of di- 

mensionality” ( Bellman et al., 1961 ), a set of problems that arise in 

machine learning that are tied to attempting to quantify a signa- 

ture pattern for a given class, when the combination of a low num- 

ber of training samples and high feature dimensionality results in 

a sparsity of data. Increasing sparsity results in a number of per- 

formance problems with the classifier, most of which amount to 

decrease generality (over-trained classifier) and decreased perfor- 

mance (low precision or high false alarm rate). Various procedures 

have been developed to address the curse of dimensionality, most 
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