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a b s t r a c t

Modified Gravity theories generally affect the Poisson equation and the gravitational slip in an observable
way, that can be parameterized by two generic functions (η and µ) of time and space. We bin their time
dependence in redshift and present forecasts on each bin for future surveys like Euclid. We consider
both Galaxy Clustering and Weak Lensing surveys, showing the impact of the non-linear regime, with
two different semi-analytical approximations. In addition to these future observables, we use a prior
covariance matrix derived from the Planck observations of the Cosmic Microwave Background. In this
work we neglect the information from the cross correlation of these observables, and treat them as
independent. Our results show that η and µ in different redshift bins are significantly correlated, but
including non-linear scales reduces or even eliminates the correlation, breaking the degeneracy between
Modified Gravity parameters and the overall amplitude of the matter power spectrum. We further apply
a Zero-phase Component Analysis and identify which combinations of the Modified Gravity parameter
amplitudes, in different redshift bins, are best constrained by future surveys. We extend the analysis to
two particular parameterizations of µ and η and consider, in addition to Euclid, also SKA1, SKA2, DESI:
we find in this case that future surveys will be able to constrain the current values of η and µ at the
2–5% level when using only linear scales (wavevector k < 0.15 h/Mpc), depending on the specific time
parameterization; sensitivity improves to about 1% when non-linearities are included.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Future large scale structure surveys will be able to measure
with percent precision the parameters governing the evolution of
matter perturbations. While we have the tools to investigate the
standard model, the next challenge is to be able to compare those
data with cosmologies that go beyond General Relativity, in order
to test whether a fluid component like Dark Energy or similarly a
Modified Gravity scenario can better fit the data. On the theoretical
side, while manyModified Gravitymodels are still allowed by type
Ia supernova (SNIa) and Cosmic Microwave Background (CMB)
data [1]; structure formation can help us to distinguish among
them and the standard scenario, thanks to their signatures on
the matter power spectrum, in the linear and mildly non-linear
regimes (for some examples of forecasts, see [2–4]).

The evolution of matter perturbations can be fully described
by two generic functions of time and space [5,6], which can be
measured via Galaxy Clustering and Weak Lensing surveys. In
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this work we want to forecast how well we can measure those
functions, in different redshift bins.

While any two independent functions of the gravitational po-
tentials would do, we follow the notation of [1] and considerµ and
η: the first modifies the Poisson equation forΨ while the second is
equal to the ratio of the gravitational potentials (and is therefore
also a direct observable [6]). We will consider forecasts for the
planned surveys Euclid, SKA1 and SKA2 and a subset of DESI, DESI-
ELG, using as priors the constraints from recent Planck data (see
also [7–12] for previous works that address forecasts in Modified
Gravity).

In Section 2 we define µ and η and parameterize them in
three different ways. First, in a general manner, we let these func-
tions vary freely in different redshift bins. Complementarily, we
also consider two specific parameterizations of the time evolution
proposed in [1]. Here, we also specify the fiducial values of our
cosmology for each of the parameterizations considered. Section
3 discusses our treatment for the linear and mildly non-linear
regime. Linear spectra are obtained from a modified Boltzmann
code [13]; the mild non-linear regime (up to k ∼ 0.5 h/Mpc) com-
pares twomethods to emulate the non-linear power spectrum: the
commonly used Halofit [14,15], and a semi-analytic prescription
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to model the screening mechanisms present in Modified Gravity
models [16]. In Section 4 we explain the method used to produce
the Fisher forecasts both for Weak Lensing and Galaxy Clustering.
We explain howwe compute and add the CMB Planck priors to our
Fisher matrices. Section 5 discusses the results obtained for the
redshift binned parameterization both for Galaxy Clustering and
for Weak Lensing in the linear and non-linear cases. We describe
our method to decorrelate the errors in Section 5.4. The results
for the other two time parameterizations are instead discussed in
Sections 6.1 and 6.2, both for Weak Lensing and Galaxy Clustering
in the linear and mildly non-linear regimes. To test the effect of
our non-linear prescription, we show in Section 6.3 the impact of
different choices of the non-linear prescription parameters on the
cosmological parameter estimation.

2. Parameterizing modified gravity

In linear perturbation theory, scalar, vector and tensor pertur-
bations do not mix, which allows us to consider only the scalar
perturbations in this paper. We work in the conformal Newtonian
gauge, with the line element given by

ds2 = −(1 + 2Ψ )dt2 + a2(1 − 2Φ)dx2 . (1)

Here Φ and Ψ are two functions of time and scale that coincide
with the gauge-invariant Bardeen potentials in the Newtonian
gauge.

In theories with extra degrees of freedom (Dark Energy, DE) or
modifications of General Relativity (MG) the normal linear pertur-
bation equations are no longer valid, so that for a given matter
source the values ofΦ andΨ will differ from their usual values.We
can parameterize this change generally with the help of two new
functions that encode the modifications. Many different choices
are possible and have been adopted in the literature, see e.g. [1] for
a limited overview. In this paper we introduce the two functions
through a gravitational slip (leading to Φ ̸= Ψ also at linear order
and for pure cold dark matter) and as a modification of the Poisson
equation for Ψ ,

− k2Ψ (a, k) ≡ 4πGa2µ(a, k)ρ(a)∆(a, k) ; (2)

η(a, k) ≡ Φ(a, k)/Ψ (a, k) . (3)

These expressions define µ and η. Here ρ(a) is the average dark
matter density and ∆(a, k) = δ + 3aHθ is the comoving den-
sity contrast with δ the fractional overdensity, and θ the pecu-
liar velocity divergence. We will neglect relativistic particles and
radiation as we are only interested in modeling the perturbation
behavior at late times. In that situation, η, which is effectively an
observable [6], is closely related to modifications of GR [17,18],
whileµ encodes for example deviations in gravitational clustering,
especially in redshift-space distortions as non-relativistic particles
are accelerated by the gradient of Ψ .

When considering Weak Lensing observations then it is also
natural to parameterize deviations in the lensing orWeyl potential
Φ + Ψ , since it is this combination that affects null-geodesics
(relativistic particles). To this end we introduce a function Σ(t, k)
so that

− k2(Φ(a, k) + Ψ (a, k)) ≡ 8πGa2Σ(a, k)ρ(a)∆(a, k) . (4)

Since metric perturbations are fully specified by two functions of
time and scale, Σ is not independent from µ and η, and can be
obtained from the latter as follows:

Σ(a, k) = (µ(a, k)/2)(1 + η(a, k)) . (5)

Throughout this work, we will denote the standard Lambda-
Cold-Dark-Matter (ΛCDM) model, defined through the Einstein–
Hilbert action with a cosmological constant, simply as GR. For this

case we have that µ = η = Σ = 1. All other cases in which these
functions are not unity will be labeled as Modified Gravity (MG)
models.

Using effective quantities like µ and η has the advantage that
they are able to model any deviations of the perturbation behavior
fromΛCDM expectations, they are relatively close to observations,
and they can also be related to other commonly used parameter-
ization [19] On the other hand, they are not easy to map to an
action (as opposed to approaches like effective field theories that
are based on an explicit action) and in addition they contain so
much freedom that we normally restrict their parameterization to
a subset of possible functions.

This has however the disadvantage of losing generality and
making our constraints on µ and η parameterization-dependent.
In this paper, we prefer to complement specific choices of param-
eterizations adopted in the literature (we will use the choice made
in [1])with amore general approach:wewill bin the functionsµ(a)
and η(a) in redshift bins with index i and we will treat each µi and
ηi as independent parameters in our forecast; we will then apply a
variation of Principal Component Analysis (PCA), called Zero-phase
Component Analysis (ZCA). A PCA approach has been considered
previously in the literature by [8,9], where they bin µ and η in
several redshift and k-scale bins. In these works they study Weak
Lensing and Redshift Space distortions or they cross correlate
large scale structure observationswith CMB temperature, E-modes
and polarization data together with Integrated Sachs–Wolfe (ISW)
observations to forecast the sensitivity of future surveys to modi-
fications inµ and η. In the present work, we will neglect a possible
k-dependence, we will focus on Galaxy Clustering (GC) and weak
lensing (WL) surveys and we will show that there are important
differences between the linear and non-linear cases; including
the non-linear regime generally reduces correlations among the
cosmological parameters. In the remainder of this section we will
introduce the parameterizations that we will use.

2.1. Parameterizing gravitational potentials in discrete redshift bins

As a first approach we neglect scale dependence and bin the
time evolution of the functions µ and η without specifying any
parameterized evolution. To this purpose we divide the redshift
range 0 ≤ z ≤ 3 in 6 redshift bins and we consider the
values µ(zi) and η(zi) at the right limiting redshift zi of each bin
as free parameters, thus with the i index spanning the values
{0.5, 1.0, 1.5, 2.0, 2.5, 3.0}. The chosen width of the redshift bins
implicitly assumes that evolution effects within this range can be
neglected. This might break down for specific models where the
functions strongly depend on the redshift, and can be therefore be
seen as an optimistic assumption. On top of these assumptions the
first bin is assumed to have a constant value, coinciding with the
one at z1 = 0.5, i.e. µ(z < 0.5) = µ(z1) and η(z < 0.5) = η(z1).
The µ(z) function (and analogously η(z)) is then reconstructed as

µ(z) = µ(z1) +

N−1∑
i=1

µ(zi+1) − µ(zi)
2

[
1 + tanh

(
s
z − zi+1

zi+1 − zi

)]
, (6)

where the tanh is used to obtain a smooth interpolation between
contiguous bin values, s = 10 is a smoothing parameter and N is
the number of binned values. We assume that both µ and η reach
theGR limit at high redshifts: to realize this, the lastµ(z6) and η(z6)
values assume the standard ΛCDM value µ = η = 1 and both
functions are kept constant at higher redshifts z > 3.

The same approach is used to obtain smooth derivatives of the
µ and η functions, computed interpolating between N −1 redshift
bins where they take the values

µ′(z̄j) =
µ(zi+1) − µ(zi)

zi+1 − zi
, (7)
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