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A B S T R A C T

Based on the special shape first introduced by Alberto Cellino, which consists of eight ellipsoidal octants with the
constraint that adjacent octants must have two identical semi-axes, an efficient algorithm to derive the physical
parameters, such as the rotational period, pole orientation, and overall shape from either lightcurves or sparse
photometric data of asteroids, is developed by Lu et al. and named as ‘Cellinoid’ shape model. For thoroughly
investigating the relationship between the morphology of the synthetic lightcurves generated by the Cellinoid
shape and its six semi-axes as well as rotational period and pole, the numerical tests are implemented to compare
the synthetic lightcurves generated by three Cellinoid models with different parameters in this article.
Furthermore, from the synthetic lightcurves generated by two convex shape models of (6) Hebe and (4179)
Toutatis, the inverse process based on Cellinoid shape model is applied to search the best-fit parameters.
Especially, for better simulating the real observations, the synthetic lightcurves are generated under the orbit
limit of the two asteroids. By comparing the results derived from synthetic lightcurves observed in one
apparition and multiple apparitions, the performance of Cellinoid shape model is confirmed and the suggestions
for observations are presented. Finally, the whole process is also applied to real observed lightcurves of (433)
Eros and the derived results are consistent with the known results.

1. Introduction

Asteroids can provide the initial information about the formation of
the solar system. The inverse process, to derive the physical parameters,
including the rotational period, pole orientation, and the overall shape
from the observed photometric data of asteroids, is one important field
in the research on asteroids. Generally, there are two commonly used
shape models with the corresponding algorithms based on the two
models. First is the traditional triaxial ellipsoid model. Karttunen and
Bowell (1989) introduced how to model the brightness variations of
asteroids based on the ellipsoid shape and analysed the morphology of
synthetic lightcurves. Cellino et al. (2009) presented the genetic
inversion method to derive the physical parameters from the sparse
photometric data based on the ellipsoid model. Carbognani et al. (2012)
attempted to represent the asteroid shape by the ellipsoid for the Gaia
photometric data. Muinonen et al. (2015) presented analytical formulas
to derive the initial rotation, shape, and scattering properties for
asteroids from sparse and dense photometry based on the so-called
Lommel-Seeliger ellipsoid. Additionally, Cellino et al. (2015) applied
the formulas in their genetic inversion method and confirmed the

efficiency of the analytical formula based on triaxial ellipsoids. Second
shape model is the convex polyhedron shape model. Kaasalainen et al.
(1992) presented an inversion algorithm to derive this type shape
model from multiple lightcurves observed in various viewing geome-
tries. Moreover, they also introduced how to improve the computing
speed by applying the Lebedev quadrature (Kaasalainen et al., 2012).
Ďurech et al. (2010) applied the Kaasalainen's method to derive the
shape models with the relevant physical parameters for about 900
asteroids.

As a mediate shape model between the ellipsoid and convex model,
Cellinoid shape model was introduced first by Cellino et al. (1989),
which consists of eight octants from ellipsoids. With asymmetric shape,
Cellinoid shape model of having three more parameters than triaxial
ellipsoid model, can simulate the shapes of real asteroids better.
Compared with the convex shape model of having about 50 parameters,
Cellinoid shape model can be applied in circumstances with the
observed photometric data points less than 100. Based on the
Cellinoid shape model, Lu et al. (2014) presented the whole inverse
process to derive the physical parameters of asteroids from lightcurves.
Furthermore, they also applied the inverse process to multiple light-
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curves for refining the derived parameters and the sparse photometric
data, such as Hipparcos data (Lu and Ip, 2015; Lu et al., 2016). The
numerical experiments confirm the inverse process can derive the
correct initial parameters and the applications to the observed light-
curves and Hipparcos data also show that it can derive the consistent
results with the other methods, such as the genetic method (Cellino
et al., 2009) and Kaasalainen's method (Ďurech et al., 2010).

For thoroughly investigating the relationship between the morphol-
ogy of the synthetic lightcurves generated by Cellinoid shape model and
the physical parameters, the numerical tests are implemented in this
article. Besides, by applying the Cellinoid shape model to the synthetic
lightcurves generated from two convex shape models at various viewing
geometries, the scheme for searching the rotational period and pole of
asteroids is presented.

The article is arranged as follows. In Section 2, the different
lightcurves are shown and compared to the physical parameters.
Subsequently, in Section 3, the two convex models for (6) Hebe and
(4179) Toutatis are employed for generating the lightcurves. For better
simulating the real observing circumstance, the orbits of the two
asteroids are considered for guaranteeing the asteroids observable.
Then the Cellinoid shape model is applied to search the best para-
meters. Finally, the scheme of efficiently applying the Cellinoid model
to real observed lightcurves of (433) Eros is discussed in Section 4. The
conclusion is to sum up in Section 5.

2. Morphology of synthetic lightcurves

2.1. Cellinoid shape model and brightness integration

As described in Lu et al. (2014), Cellinoid shape model is defined in
terms of eight octants from eight similar ellipsoids with six semi-axes
a a b b c c{ , , , , , }1 2 1 2 1 2 . The upper four octants are listed as follows:
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In addition to the pole orientation (λ β, ) in ecliptic coordinate
frame, rotational period (P) with the initial rotational phase angle (Φ0),
and the scattering function (S), the integrated brightness of Cellinoid
shape model can be simulated as

∬L E E S μ μ α dσ( , ) = ( , , ) ,
C

0
+

0 (5)

where E E, 0 are the viewing direction and illuminating direction
respectively in ecliptic coordinate frame.

Here it should be noticed that as the Cellinoid shape model is
asymmetric, the principal axis is not same as the one of ellipsoid model,
i.e. z-axis. As shown in Lu et al. (2014), the principal axis of Cellinoid
shape model with six semi-axes a a b b c, , , , ,1 2 1 2 1 and c2 can be calculated
by the eigen decomposition of the inertia tensor matrix A MB( − ),
where M a a b b c c= ( + )( + )( + )π

6 1 2 1 2 1 2 is the volume of Cellinoid, and
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is the inertia matrix constructed by nine components tensors, as well as
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following the definition of the center of mass of Cellinoid shape model,
G x y z a a b b c c( , , ) = ( ( − ), ( − ), ( − ))3
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Additionally, as described in Kaasalainen et al. (2001),
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the scattering function is applied in the simulation, with the definition
of phase function,

f α a α
d

kα b( ) = exp − + + ,
⎛
⎝⎜

⎞
⎠⎟ (9)

presented by Muinonen et al. (2009).
Following the previously described scattering function and shape

model, the brightness integral (5) can be discretized as,
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where i is the index of octants of Cellinoid, and j is the index of
triangular facets of each octant, as well as facet area SΔ i j, .

2.2. Synthetic lightcurves

Supposing the longitude and latitude of the pole orientation is
(0°, 90°) in ecliptic frame and the rotational period is P = 5 h, three
Cellinoid shape models with different semi-axes are given in Fig. 1,
where six semi-axes of (A) are [5, 5, 4, 4, 3, 3] and [6, 4, 5, 3, 4, 2] for
(B), as well as [7, 3, 5, 3, 3, 3] for (C). The X Y Z, , in Fig. 1 show the
three geometric axes, while the X Y Z, ,0 0 0 show the principal inertia
axes. The shape model will rotate around the principal axis Z0 with the
largest inertia moment. Apparently, the Cellinoid shape (A) is the same
as a traditional ellipsoid with the three semi-axes [5, 4, 3], whose
geometric axes are identical to the principal inertia axes.
Contrastively, the Cellinoid shape (B) and (C) show the asymmetric
shape structures merely with 3 more parameters than the ellipsoid.

Fig. 1. Three Cellinoid shapes with different semi-axes. (X Y Z, , are the geometric axes; X Y Z, ,0 0 0 are the principal inertia axes).
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