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A B S T R A C T

Most planetary bodies are moving in the solar wind, in a stellar wind, or in a plasma flow within the
magnetosphere of a planet. The interaction of the body with the flowing plasma provides us with various
interaction types, which mainly depend on the flow speed, the magnetization of the body, its conductivity, the
presence of an ionosphere, and the size of the body. We establish two cornerstones representing highly
magnetized obstacles embedded in a super-Alfvénic and sub-Alfvénic plasma. Those two cornerstones complete
the two cornerstones defined in our previous study on inert obstacles in super-Alfvénic and sub-Alfvénic regimes.
Tracking the transitions between these cornerstones enable better understanding of the feedback of the obstacle
onto the plasma flow. Each interaction is studied by means of the hybrid model simulation code AIKEF. The
results are summarized in three dimensional diagrams showing the current structures, which serve as a basis for
our descriptions. We identify the major currents such as telluric, magnetosonic, Chapman–Ferraro, and bow-
shock currents as the signatures of the particular state of development of the interaction region. We show that
each type of interactions can be identified by studying the shape and the magnitude of its specific currents.

1. Introduction

Planetary objects possessing an internal magnetic moment are
studied in the Solar System through Mercury, Earth, the giant planets
and Ganymede. There have been numerous studies on the impact of the
solar wind on magnetospheres induced by an intrinsic planetary
magnetic moment (Kivelson and Bagenal, 2007, and references there-
in). These focus in particular on the effect of the solar wind velocity in
terms of Alfvén Mach number (e.g. Roelof and Sibeck, 1993; Shue et al.,
1997; Lavraud et al., 2013). The planets of the Solar System are
standing most of the time in a super-Alfvénic solar wind with velocities
from 300 to 1000 km/s (Marsch, 2006). Interactions of a sub-Alfvénic
solar wind with a planetary obstacle are rare, and only occur during
particular events, such as coronal mass ejections (Chané et al., 2012).
However, moons embedded in the magnetosphere of their host planets
are mostly subjected to a sub-Alfvénic inflowing plasma. Nonetheless,
one moon, Ganymede – embedded in the magnetosphere of Jupiter –
has been proven to have an intrinsic dipole field (Kivelson et al., 1996).

Several studies focus on those two parameters – the Solar wind Alfvén
Mach number and planetary intrinsic field – and their influences, e.g.
on the magnetopause position (Case and Wild, 2013), the reconnection
rate (Borovsky, 2008), or global and topological studies (Gombosi et al.,
2000; Ridley, 2007; Tsyganenko and Andreeva, 2015). Analysis has
been performed using a range of magnetizations as a main parameter,
with the purpose of describing the evolution of the magnetosphere as a
function of the internal dipole strength and the inflowing plasma Mach
number. Omidi et al. (2002, 2004) and Simon et al. (2006a) conducted
such studies for simulations of an asteroid using various magnetic
moments, while Boesswetter et al. (2004, 2007, 2010) and Kallio et al.
(2008) simulated the time evolution of the now extinct Martian
intrinsic dipole. Such extrapolations of interaction types have been
performed using different parameters, in order to evaluate the magnetic
field of extrasolar planets (Durand-Manterola, 2009), their signatures
on a host star (Saur et al., 2013), or their potential observation (Farrell
et al., 1999; Zarka, 2006). Electric current signatures in the magneto-
sphere have been extensively investigated via both simulations and
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observations (e.g. Siscoe et al., 2000; Liemohn et al., 2013). Describing
the current system is a convenient way to attach the topology of
magnetosphere to its fundamental processes (Mauk and Zanetti, 1987).
Magnetospheric permanent current systems that have been listed are
the ring, tail, Chapman–Ferraro, field aligned and ionospheric currents
(Ganushkina et al., 2015, and references therein). In this paper, we
analyze various current systems as a function of the upstream plasma
Alfven Mach number, and planetary intrinsic magnetic moment. We
base our study on the interpretation of the results from the hybrid
model code AIKEF. This paper is a continuation of Vernisse et al.
(2013). First we explain how we identify the current systems from the
simulation results, then we will summarize those systems into sche-
matics. Details of simulations results are provided in the auxiliary
material, where all aspects pertaining to the interpretation are intro-
duced in detail.

2. The AIKEF simulation code

2.1. Model description

Hybrid models are a good compromise in plasma simulation
between needs in computational time and physical description. For
our study we use a 3-D particles-in-cell simulation based on the hybrid
model: AIKEF. This stands for Adaptive Ion Kinetic Electron Fluid and it
is based on the work by Bagdonat and Motschmann (2002a).
Subsequent improvement have been developed and described by
Mueller et al. (2011). The hybrid model treats electrons as a fluid
and ions as particles. Three assumptions are applied when deriving the
hybrid model equations: (1) quasi-neutrality, (2) masslessness of
electrons, and (3) negligibility of the displacement current. The motion
of each ion is derived using the momentum equation dominated by
Lorentz's force. The AIKEF code has already shown its sturdiness to
reproduce observations data, through simulations of the Moon (Wiehle
et al., 2011; Wang et al., 2011) with data from ARTEMIS, Mercury
(Wang et al., 2010; Mueller et al., 2012) with data from Messenger,
Rhea (Roussos et al., 2008; Simon et al., 2012), Enceladus (Kriegel
et al., 2009, 2011), Tethys (Simon et al., 2009) and Titan (e.g. Mueller
et al., 2010; Simon et al., 2006b) with data from the Cassini spacecraft.
The numerical challenges and techniques pertinent to AIKEF have been
discussed in Mueller et al. (2011).

2.2. Simulation parameters

In this paper the results are presented and discussed using normal-
ized quantities. The normalizations of the relevant quantities related to
this work are described in Table 1. The average number of particle in
each cell is 100. Also, particles start to split and merge 8 cells away
from the boundary of the refined area in order to avoid artificial
gradient (Mueller, 2011). The fundamental quantities, B0, n0, q0, and
m0, are taken equal to the upstream plasma magnetic field, number
density, particle charge, and particle mass, respectively. The other
normalization factors naturally follow from the normalization proce-
dure and can be expressed as functions of the above quantities. An
example for each quantity is given for Earth-like upstream solar wind
parameters in the last column. The reader is invited to refer to this table
to convert the normalized results with the appropriate upstream
parameters. Other fixed plasma parameters in this paper are ion plasma
beta at initialization β = 0.5i ; electron plasma beta β = 0.5e ; planetary
radius R x= 20p 0, where the ion inertial length x0 is defined in Table 1;
and the planetary resistivity η η= 200p 0. The radius is chosen to
correspond to a Lunar-sized obstacle considering the upstream plasma
parameters around the Moon, while the resistivity is set with the
purpose of having a quasi-dielectric obstacle, in consistency with our
previous study (Vernisse et al., 2013). All but two parameters are fixed
for every simulation. Our variables are listed in Table 2, which consist
in: (1) the magnitude of the internal magnetic moment of the obstacle

and (2) the upstream stellar wind velocity. The ratio between the
upstream velocity and the magnetic moment is illustrated by the stand-
off distance which is expressed by:
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with Bsurf being the magnetic field magnitude from the planetary
magnetic moment at R(x = 1 , y = 0, z = 0)p . The terms Bup, mup, nup
and vup are the magnetic field, particle mass, number density, and the
velocity of the stellar wind, respectively. In super-Alfvénic regimes, the
dynamic pressure of the upstream plasma is higher than its magnetic
pressure, but in sub-Alfvénic regime, the upstream magnetic field
pressure is dominant. Since both regimes are treated in this paper,
the upstream field term has been added in the stand-off distance
equation (see details in Baumjohann and Treumann, 1996). The
scenarios investigated in this work are listed in Table 2. They are
identified by a name providing the normalized magnetic moment with
its orientation and the upstream velocity in Alfvén Mach. Each set of

Table 1
Table of normalizations with a typical set of values at Earth. The terms mp and e are the
mass of the proton and the elementary charge, respectively. One should note that the
expressions here are written without any simplifications. A common simplification is to
consider: m m=0 p and q e=0 . In this paper, we consider that B B=0 up, n n=0 up, q q=0 up,
and m m=0 up (with Bup, nup, qup, and mup being the upstream stellar wind magnetic field
magnitude, number density, particle charge, and particle mass, respectively), i.e., the
normalization is made using the upstream stellar wind parameters. The term vA,0 stands
for the Alfvén velocity.

Quantity Variable Normalizationa Example

Fundamental quantities
Magnetic field B B0 5.0 nT
Number density n n0 5.0 cm−3

Mass mα m0 m1.0 p

Charge qα q0 e1.0

Secondary quantities
Time t t m q B= /( )0 0 0 0 2.1 s
Length x x m μ q n= ( /( ))0 0 0 0

2
0 1/2 1.0·10 km2

Velocity u u x t B μ ρ v= / = /( ) =0 0 0 0 0 0
1/2 A,0 48 km/s

Current density j j q n v=0 0 0 A,0 3.9 nA/M2

Electric field E E v B=0 A,0 0 2.4·10 V/m−4

Resistivity η η E j= /0 0 0 6.2·10 Ω m3

Magnetic moment M M πB x μ= 4 /0 0 0
3

0 5.3·10 A m13 2

a With appropriate definition when necessary.

Table 2
Simulation parameters for the runs presented in this paper. The magnetic moments,
surface magnetic field magnitudes, and velocities are normalized using Table 1. The term
Bsurf refers to the magnitude of the planetary field at x R( = 1 , 0, 0)p , vup is the upstream
plasma velocity, and LSO refers to the stand-off distance, which expression is detailed in
Section 2 and given by Eq. (1). The name of each case gives the orientation ( z+ ) and
magnitude of the magnetic moment of the obstacle, and the upstream velocity of the
stellar wind.

Case name M M[ ]0 B B[ ]surf 0 v v[ ]up A,0 L R[ ]SO p Figures

Cornerstones

+80E3M vẑ|80 A,0 80·103 10 8 1.38 1,2

(Mercury-Type)

+40E3M vẑ|0.50 A,0 40·103 5 0.5 2.08 3

(Ganymede-Type)

Transitions

+10E3 M v+10E3 ẑ|80 A,0 10·103 1.25 8 0.69 4

+5E3M vẑ|20 A,0 5·103 0.62 2 0.84 5

+40E3M vẑ|20 A,0 40·103 5 2 1.68 6

+5E3M vẑ|10 A,0 5·103 0.62 1 0.97 7a

+40E3M vẑ|10 A,0 40·103 5 1 1.94 7b
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