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a b s t r a c t 

Stimulated by recent experimental realization of tunability of multi-particle processes in 

ultracold fermion gases, we study a SO(4) symmetric generalized Hubbard model in an 

one-dimensional lattice with two-body and three-body interactions up to the nearest 

neighboring sites. By using the bosonization and renormalization-group schemes, we fo- 

cus on weak-coupling regime and half-filled band, and determine the ground-state phase 

diagram, which consists of the Mott-insulator (MI), Luttinger liquid (LL) and Luther-Emery 

(LE) liquid phases. The diagonal three-body attraction significantly modifies the phase di- 

agram and is responsible for superconducting phases even in the presence of two-body 

repulsions. 

© 2016 The Physical Society of the Republic of China (Taiwan). Published by Elsevier B.V. 

All rights reserved. 

1. Introduction 

The effect of interactions between electrons in the low-dimensional systems continues to be the current subject of in- 

tense investigation. Especially since the discovery of high-T c superconductivity, much effort has been devoted to under- 

standing electron correlation and superconductor transition. Both theoretical and experimental results exhibit that quite 

a number of strongly correlated electron systems demonstrate rich phase diagrams [1] . The main interest is focused on 

two-dimensional (2D) systems, but the study on one-dimensional (1D) systems is equally important. This is not only due 

to the conjecture [2] that properties of 1D and 2D counterparts of certain models share common aspects, but also due 

to the fact that the 1D case is easier to handle than its higher-dimensional versions. Moreover, there are some efficient 

theoretical schemes restricted to 1D systems, e.g., bosonization [3] , “g-ology” renormalization group (RG) [4,5] , and confor- 

mal field theory [6] , which enormously facilitate investigation of 1D models as a first step. In addition, several numerical 

approaches are powerfully applied to 1D systems, such as quantum Monte Carlo [7] , exact diagonalization [8] and density- 

matrix-renormalization group [9] . In addition to traditional quasi-1D Bechgaard salts [10] , conducting polymers [11] and 

organic conductors [12] , a great deal of 1D novel materials have been experimentally realized, such as carbon nanotubes 

[13] , quantum wires [14] , edge states in quantum Hall effect system [15] . All this highlights that the understanding of the 

1D physics is both feasible and essential. 

Usually, the correlation effects are appropriately modeled by the Hubbard Hamiltonian [16] and its generalizations [17–

23] . These models are widely used to investigate various properties of 1D systems. Among others, the search for elec- 

tronic superconductivity mechanism and the analysis of insulator-superconductor transitions are a topic of increased interest. 
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Conceptually, the attractive Hubbard model is proposed to be the simplest model for describing the superconductivity. Anal- 

ogous to negative- U Hubbard model, some phenomenological models with the BCS-like interactions were intensively studied 

[24,25] . Besides, the extended Hubbard model with correlated-hopping interactions (CHIs) provides a distinctive mechanism 

for superconducting instability [26] , and the integrable supersymmetric extension of the Hubbard model with correlated 

kinematics is used to argue for a superconducting ground state of the η-pairing type [27] . However, in any case the electron 

Coulomb interactions are repulsive. Apparently, the mechanism of superconductivity is still an open question and is worth 

further clarifying. 

In essence, the interacting electron systems belong to the many-body physics. In the context of nearest neighboring 

(nn) interactions, most of the Hubbard generalizations are restricted to two-body interactions. Even though the CHIs are 

considered, the interactions involve at most off-diagonal three-body form, which does not directly couple density–density 

interactions. However, the Pauli exclusion principle indicates the possible existence of diagonal three-body and even four- 

body interactions that directly couple local electron densities between intersites. These neglected many-body interactions 

may be more related to superconductivity or something else. Inspiringly, the experimental realization of ultracold fermion 

gases with strong dipolar moments and their confinement in optical lattices permit one to study in a controllable way 

effects of many-body diagonal interactions in 1D lattice systems [28–30] . For example, the diagonal three-body coupling has 

been experimentally observed in cold 

85 Rb atoms confined in a magneto-optical trap [31] or in a optical lattice [32] . These 

experimental advances open a quite promising research frontier for investigation of extended Hubbard models, spurring the 

interest in the roles of three-body interaction and paving the way to the research for superconductivity. The present work is 

devoted to the investigation of such problem. Our main purpose is to explore the effect of recently experimentally controlled 

three-body site density coupling, which is expected to be relevant in stabilizing the superconducting phase. Particularly, for 

one value of the diagonal three-body attraction [which corresponds to the so(4) Lie algebra], we shall determine weak- 

coupling phase diagram, where in addition to an insulating spin-density-wave (SDW) phase, in appropriate regions of the 

parameter space the superconducting phase is the stable ground state. 

2. Model and its low-energy analysis 

The 1D interacting electron system that we consider is modeled by the full Hamiltonian: 

H = H 1 + H 2 + H 3 , (1) 

where 

H 1 = −
∑ 

i,α

t(c † 
iα

c i +1 α + c † 
i +1 α

c iα) , (2) 

H 2 = 

1 

2 

∑ 

i jkl 

∑ 

αα′ 
〈 i j|V αα′ | kl〉 c † 

iα
c † 

jα′ c lα′ c kα, (3) 

H 3 = 

1 

2 

∑ 

iα

T (n iαn i αn i +1 + n i +1 αn i +1 αn i ) . (4) 

Here, the H 1 term denotes the genuine hopping. The H 2 term represents two-body interactions. In the case of short- 

ranged electron interaction, the dominant matrix elements read U = 〈 ii |V αα| ii 〉 , V = 〈 i j|V αα′ | i j〉 , W = 〈 ii |V αα′ | j j〉 and X = 

〈 ii |V αα′ | i j〉 . U and V parameterize the on-site and a nn density interaction, respectively. X is a bond-charge interaction, which 

may be viewed as a density-dependent nn hopping. W parameterizes the on-bond interaction, which is often referred to as 

a pair-hopping. Physically, U , V , W , X > 0. In addition, the U and V terms describe diagonal parts of the electron–electron 

interactions in a site representation, while the W and X terms describe site-off-diagonal parts. In Ref. [16] , only the U term 

is considered in point of 3 d electrons in transition metals. However, the neglected interactions cannot be expected to be 

irrelevant to the physics of the systems. When all the nn interactions are taken into account, the H 2 term is rewritten in 

the Wannier represent as 

H 2 = U 

∑ 

i 

n i ↑ n i ↓ + V 

∑ 

i 

n i n i +1 

+ W 

∑ 

i 

(c † 
i ↑ c 

† 

i ↓ c i +1 ↓ c i +1 ↑ + h.c. ) 

+ X 

∑ 

i,α

(c † 
iα

c i +1 α + h.c. )(n i α + n i +1 α) . (5) 

Distinctively, the H 3 term represents contribution of the three-electron processes. T is the diagonal three-body interaction, 

which directly couples local site densities, just like two-body U and V . Experimentally, these diagonal interactions ( U , V , T ) 

can be tuned independently by using the current ultracold systems [29,31–33] . Note that T itself is not equal to the Coulomb 

interaction but is a sign of the many-body effect, and hence it may be attractive ( T < 0). 

The model Hamiltonian (1) is fairly general, containing some interesting limiting cases. The known t − U − V model 

corresponds to vanishing W , X and T , and its quantum phase diagrams were extensively discussed [34–41] . When V , X and 
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