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Abstract

Recent advances have shown a great potential to explore compressive sensing (CS) theory for thermal imaging due
to the capability of recovering high-resolution information from low-resolution measurements. In this paper, we present
a Bayesian CS reconstruction algorithm that makes use of a new sparsity-inducing prior, referred as Gaussian-Jeffreys
prior, and demonstrate performance gain of imposing this new prior on thermal imagery where the signal-to-noise ratio is
low. We first derive a hierarchical representation of the Gaussian-Jeffreys prior that facilitates computational tractability,
then propose an efficient evidence approximation inference algorithm. We show that the proposed estimator is able to
provide stronger sparsity-inducing power comparing to the conventional choices. Extensive numerical examples are
provided with performance comparisons of different CS estimators, in particular when the compressive measurements

are available via thermal imaging.
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1. Introduction

Compressive sensing (CS) theory [1, 2,:3] proposes new
techniques to recover unknown sparse signals from un-
derdetermined linear measurements, making the use of
the sensors with much fewer detectors possible. As for
infrared imagers the sensor resolution has a significan-
t impact on the hardware cost, CS has become one of
the most compelling research topics in this area. Recen-
t advances includes single-pixel infrared detector[4, 5, 6],
super-resolution reconstruction[7] and image fusion [8, 9].

The CS theory indicates that, if a signal is compressible
in the basis, then highly accuracy recovery is possible with
incomplete measurements. Specifically, let u € RM repre-
sent original signal, u is compressible in basis ¥ € RM*M
(e.g. @ wavelet basis), which means that u = ¥w and
most components of the vector w € R™ have negligible
amplitude. Write w as w = x + o(x), where x € RM rep-
resents w with all the negligible components set to zero.
According to CS theory, x is guaranteed to be recovered
from an insufficient number of measurements, denoted by
y € RNy = 0Ty = dw = ®x + Po(x) = Px + e,,
where N < M, e, = ®o(x), ® € RV*M is measurement
matrix. Also note that the measurements may be noisy,
with measurement noise e,,, thus y = ®x + e, + e,,. Let
e = e, + e, represented by a zero-mean white Gaussian
noise, finally, the CS model is given by:

y=®x+e. (1)
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Eqn.(1) is underdetermined, since the number of measure-
ments y is much smaller then the number of coefficients
x. Solving for it requires a sparsity-promoting regulariza-
tion on x. Essentially, most successful current CS recon-
struction algorithms [2, 10, 11, 12, 13, 14] perform least
squares regression with the addition of independent gen-
eralized Gaussian prior over each coefficient:

p(z) o< exp (—|z|”), (2)

when p € [0,1], exp (—|x[”) has been proved to encour-
age sparsity due to its heavy tails and sharp peak at zero.
Specifically, when p = 1, exponent of the multi-dimensional
prior p(x) is an ¢;-norm; when p — 0, exponent of p(x) ap-
proaches an £p-norm, i.e. a count of the number of nonzero
components in vector x, defined as |x||, = > m Lz, 20}
Accordingly, the Maximum a posteriori (MAP) estimation
using p(x) is a penalized least squares regression with £,-
norm:

. 2
arg m):Il ly — ®x|l; + 77||X||p7 (3)

where model parameter 1 controls the relative importance
applied to error term and sparseness term. A number
of methods have been proposed to solve the MAP prob-
lem defined in Eqn.(3), including linear programming al-
gorithms [2, 10], reweighted norm algorithms [11, 12] and
greedy methods [13, 14].

There is also a significant trend to formulate the CS
reconstruction problem in a Bayesian framework, which
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