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h i g h l i g h t s

� SPSO is employed to retrieve the GRI accurately.
� Double-layer model can improve the retrieval accuracy.
� An independent model is proposed to retrieve the GRI.
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a b s t r a c t

Inverse estimation of the refractive index distribution in one-dimensional participating media with
graded refractive index (GRI) is investigated. The forward radiative transfer problem is solved by the
Chebyshev collocation spectral method. The stochastic particle swarm optimization (SPSO) algorithm
is employed to retrieve three kinds of GRI distribution, i.e. the linear, sinusoidal and quadratic GRI distri-
bution. The retrieval accuracy of GRI distribution with different wall emissivity, optical thickness, absorp-
tion coefficients and scattering coefficients are discussed thoroughly. To improve the retrieval accuracy of
quadratic GRI distribution, a double-layer model is proposed to supply more measurement information.
The influence of measurement errors upon the precision of estimated results is also investigated.
Considering the GRI distribution is unknown beforehand in practice, a quadratic function is employed
to retrieve the linear GRI by SPSO algorithm. All the results show that the SPSO algorithm is applicable
to retrieve different GRI distributions in participating media accurately even with noisy data.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Radiative heat transfer (RHT) in participating media with
graded refractive index (GRI) distribution has attracted significant
attention in recent years due to its wide applications in various
engineering fields such as combustion diagnosis, remote sensing,
biological tomography, thermal protecting coating, stellar atmo-
sphere detection, manufacturing of waveguide materials, to name
a few [1–6]. Insight understanding and complete modeling of
RHT in these fields depend on the accurate knowledge of the GRI
distribution in participating media, which are fundamental and
intrinsic parameters to determine the light transfer in these media
because the GRI distribution having significant effects on radiative
transfer characteristics of media. Unfortunately, in many cases of

practical interest, these quantities are not known beforehand. It
can’t be measured directly and can only be retrieved with the help
of some experimental data and corresponding inverse theory.
To date, accurate determination of the GRI distribution of
participating media should be considered as an unsolved problem,
open to research.

To retrieve the GRI distribution, the first step is to calculate the
direct radiative transfer problem for the essence of the inverse esti-
mation which is the iterative calculation of the direct problem by
updating the GRI. It is well known that the direct problem solver
is very critical for an optimization approach. If the direct problem
solver is not accurate enough, the optimal results cannot be
obtained by such optimization approach. As most common inverse
methods are multi-iterative and time consuming especially for
complex geometries, developing more efficient methods is utmost
necessary. With this idea in mind, the first and most essential stage
in estimating GRI is to solve the direct problem efficiently. Past
years have witnessed sustained efforts aimed at understanding
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the behavior of RHT in participating media with GRI. Numerous
efforts were made to develop suitable numerical schemes for its
solution. For instance, Ben Abdallah et al. [7–10] developed a
curved ray tracing technique to study RHT in semitransparent
media with GRI. Liu and Tan [11] adopted discrete curved ray trac-
ing method to study transient temperature response in semitrans-
parent media with graded index under pulse irradiation.
Lemonnier et al. [12] developed a discrete coordinate method to
study RHT in one-dimensional (1D) semitransparent media with
GRI. Liu [13] developed a discrete curved ray tracing method to
analyze RHT in 1D semitransparent media with graded index. He
also derived the radiative transfer equation in three-dimensional
cartesian coordinate system and developed a finite volumemethod
(FVM) to solve RHT in multi-dimensional GRI media [14]. Xia et al.
[15] adopted combined Monte Carlo (MC) method and discrete
curved ray tracing method to study RHT problem in absorbing
and scattering media with graded index. Recently, Li et al.
[16,17] developed spectral method to solve the RHT in participat-
ing media with GRI. Due to the exponential convergence of spectral
methods, a very high accuracy can be obtained even using few
grids. Compared with the FVM, FEM andMCM, the spectral method
costs less time in solving the same problem.

According to the discussion above, the direct radiative transfer
problem within GRI media has been well established. By contrast,
the inverse problem of GRI has not been well investigated and few
works have focused on retrieving the GRI distribution. To date, the
widely-used conventional inverse methods are gradient-based
methods, including the Conjugate Gradient (CG) method, Gauss-
Newton method (GN), and Levenberg-Marquardt (LM) method,
etc. [18,19]. However, all these gradient-based algorithms need
to solve the first or second derivative of the objective function with
respect to the inversion parameters, which may be computation-
ally expensive in terms of both memory requirements and CPU
time. It is well known that the gradient-based methods converge
fast but the gradient computation is sometimes complicated and
the convergence depends strongly on the choice of initial guess
of the unknown function [20]. Without correlative experience, it
may be difficult to have a reasonable result unless a proper initial

guess value is available. In a word, these methods are unable to
robustly provide solutions close to the global optimal domain
[21]. To circumvent this issue, the intelligent optimization algo-
rithms based on the population exhaustive search has been pro-
posed to solve the inverse problems in recent years, such as the
Genetic Algorithm (GA), the Particle Swarm Optimization (PSO),
the Ant Colony Optimization (ACO), and the Neural Network Algo-
rithm (NNA) [22–25]. Comparing with the traditional gradient
based methods which go from one approximation in the search
domain to another approximation, the stochastic methods are able
to search for as many solutions as possible simultaneously and
thus have the potential to give unbiased estimation. A characteris-
tic feature of these intelligent optimization methods is that they
can solve the global optimal problem reliably and obtain high qual-
ity global solutions with enough computational time. They tend to
perform better than the local method (gradient-based method),
especially for higher problem dimensions [26]. The PSO algorithm
that was first proposed by Eberhart and Kennedy in 1995 is an
optimization algorithms based on swarm intelligence [27]. Its basic
idea comes from the foraging behavior of birds. Group cooperation
and competition among the particles produce swarm intelligence
to guide the optimization search of PSO. Attractive features of
PSO are simple computational process, ease of implementation
and a very good convergence characteristic. As a high efficiency,
simple parallel search algorithm, PSO algorithm has attracted
increasing attention and widely applied in all kinds of optimization
problems in recent years. Our group [23] applied the stochastic
PSO (SPSO) to retrieve the absorption, scattering, extinction coeffi-
cients and radiation source term. After that, the radiation source
term, optical thickness, albedo and scattering phase function are
inversed by adopting multi-phase particle swarm algorithm
(MPPSO) [28]. The PSO-based algorithms were also employed to
solve transient radiation problems by our group [29]. Yuan et al.
[30] adopted SPSO to identify the aerosol particles particle size dis-
tribution based on atmospheric radiative transfer model. Farah-
manda et al. [31] utilized PSO algorithm to perform optimization
study on two-dimensional radiation chamber with diffuse gray
boundary. Compared to the inverse radiative problems above, the

Nomenclature

a the coefficient of graded refractive index distribution n
(x)

�a the average retrieval result
b the coefficient of graded refractive index distribution n

(x)
c the coefficient of graded refractive index distribution n

(x)
c1, c2 the two positive acceleration coefficients in Eq. (4)
F objective function
I radiative intensity, W/(m2 sr)
n the graded refractive index of participating media

PgðtÞ the global best position discovered by all particles at
generation t

PiðtÞ the local best position of particle i discovered at gener-
ation t or earlier

R1, R2 the random number in the range of [0, 1]
sj the Chebyshev-Guass-Lobatto collation points
S the sensitivity coefficient
T the temperature, K
XiðtÞ the position array of the ith particle at generation t
ViðtÞ the velocity array of particles at generation t

Greeks symbols
v the derivative of refractive index with respect to the

coordinate x
d the standard deviation
e the wall emissivity
U the scattering phase function
c the measurement errors, %
ja the absorption coefficient, m�1

js the scattering coefficient, m�1

l outgoing direction cosine of radiative intensity
l0 incoming direction cosine of radiative intensity
r Stefan-Boltzmann constant or the standard deviation
s optical thickness
w the dimensionless radiative intensity
1 random variable

Subscripts
0 the left boundary
b blackbody
est estimated value
L the right boundary
i ith iteration
mea measured value
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