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A B S T R A C T

We used an advanced 3D model to study the effect of crystal orientation on the dislocation multiplication in
single-crystal silicon under accurate control of the cooling history of temperature. The incorporation of the
anisotropy effect of the crystal lattice into the model has been explained in detail, and an algorithm for accurate
control of the temperature in the furnace has also been presented. This solver can dynamically track the history
of dislocation generation for different orientations during thermal processing of single-crystal silicon. Four
orientations, [001], [110], [111], and [112], have been examined, and the comparison of dislocation
distributions has been provided.

1. Introduction

Dislocations in crystalline silicon have been identified as one of the
most relevant defect centers for the efficiency of photovoltaic devices
[1]. The demand for increased solar cell efficiencies necessitates a
reduction in the number of dislocations. To reduce dislocations, the
seeded growth of high-performance multicrystalline [2] or mono-like
[3] silicon has been proposed. This technique can improve the quality
of crystalline silicon, but the problem of the generation of dislocations
has not yet been solved.

Many different attempts have been made to reduce dislocations,
including the combination of differently orientated seeds [4], the
replacement of multiple seeds with a single seed [5], the control of
grain boundaries [6,7], the control of impurities [8], and so on. All of
these can reduce the number of dislocations to some extent.

We are especially interested in the choice of the seed orientations in
the method of combination of differently orientated seeds [4]. We aim
to study the possibility of suppressing the generation of dislocations by
changing only the crystal orientation, and to determine which orienta-
tion is the most beneficial for reducing dislocations. Furthermore, we
are interested in the following: for the generation of dislocations, which
orientation is not much affected by the later thermal processing after
growth?

For the sake of convenience and simplification, we only considered
several same-size cylindrical-shape ingots with different orientations in
the axial direction. Certainly it is more reasonable to combine different-
orientation crystals into one ingot, and study the dislocation generation

inside the different parts. However, the stress boundary conditions
between the different parts will become complex due to the different
crystal orientations. We will mainly use the simplified cases to illustrate
the effect of the crystal orientations on the generation of dislocations,
and the conclusions might be approximately applied to the multi-seed
growth method. Furthermore, the simplified cases can easily help us
study the sensitivity of dislocation generation on the crystal orientation
during later thermal processing after growth.

Dislocation generation is a rather complex and totally nonlinear
process. The simple critical resolved shear stress approach [9,10]
cannot accurately describe the generation of dislocations. The Schmid
factor method [11] under a uniform tangential stress field does not
describe the dynamical generation process of dislocations. To accu-
rately predict the effect of crystal orientation on the generation of
dislocations, we used an advanced 3D dislocation model [12–14],
which considers 12 slip directions, 144 cross slips, the immobilization
of mobile dislocations, jog formation between different slip systems,
and internal stress due to short-range interactions. This model can
dynamically track the time evolution of the dislocation density with
stress relaxation and strain hardening during the crystal growth
process.

In this study, we use the 3D model to study the influence of crystal
orientation on the generation of dislocations and try to clearly confirm
which orientation is the most beneficial for the suppression of
dislocation generation.
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2. Formulations

The advanced 3D Alexander-Haasen model for dislocation multi-
plication can be referred to in papers [12–14]. This section will
introduce only the incorporation of the anisotropic effect of the crystal
lattice and the effect of crystal orientations into that model.

To incorporate the effect of the growth direction, the anisotropy
effect of the crystal lattice has to be included. The elastically isotropic
assumption characterized by the Young modulus and the Poisson ratio
can no longer be used. For cubic single crystals with the Voigt notation
used for stress and strain components, the anisotropic stress-strain
relation can be given as follows in a Cartesian coordinate system x1, x2,
and x3, which are coincident with the crystallographic axes,
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where C11, C12, and C44 are three independent elastic constants for cubic
single crystals. The temperature dependencies of C11, C12, and C44 for
single-crystal silicon can be found in the literature [15]. For conve-
nience, we reproduce them here as follows:

C T= 1.6564 × 10 exp[−9.4 × 10 ( − 298.15)],11
12 −5 (2-1)

C T= 0.6394 × 10 exp[−9.8 × 10 ( − 298.15)],12
12 −5 (2-2)

C T= 0.7951 × 10 exp[−8.3 × 10 ( − 298.15)],44
12 −5 (2-3)

where the unit of C11, C12, and C44 is Pa, and the unit of T is K.
In a practical crystal growth process, it is more convenient to use an

arbitrary Cartesian coordinate system x′1 , x ′2, and x ′3, in which x ′3 is set to

be in the crystal orientation direction. In this arbitrary Cartesian
coordinate system x′1, x ′2, and x ′3, the stress-strain relation can be
given by
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where the components of the elastic matric C′ij are related to the three
independent elastic constantsC11,C12, andC44, and the direction cosines
of x ′i vs. xj between the above two coordinate systems. The formulations
of C′ij has been provided by Miyazaki [16].

In many practical crystal growth processes, axisymmetrically
shaped crystals are grown. To conveniently describe the crystal shape,
a cylindrical coordinate system x r*(= )1 , x θ*(= )2 , x z*(= )3 is generally
adopted and the coordinate x*3 is also normally set to be in the crystal
orientation direction, i.e., x z x*(= ) = ′3 3. The stress-strain relationship in
the cylindrical coordinate system can be expressed as
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where the components of the elastic matrix C*ij are determined from C′ij,
the covariant metric tensor gαβ, and the derivatives x x∂ */∂ ′i j. The
formulation of C*ij has been provided by Miyazaki [16].

The anisotropic stress calculation has to be solved in a three-
dimensional system and requires a lot of computational time. As
pointed out in a previous study [17], two simplifications can be adopted
to reduce the total computational time, introducing just a small error of
less than 6%. The first simplification is that the shear stresses σθz and
σrθ are considerably smaller than all of the other stress components and
can therefore be neglected [17,18]. The second simplification is that all
of the terms involving a trigonometric function of nθ can be neglected
after the drop power transformation of the trigonometric functions,
which is equivalent to performing an average over π2 . Therefore, a
simplified 2D stress-strain relation including the anisotropy effect of
the elastic constants can be written as follows:
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where λij denotes the anisotropy effect in a silicon single crystal, which
is different for different orientations. For example, Miyazaki [16] has
provided the following expression:
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where C′ij is the constant matrix of Eq. (3) for an arbitrary Cartesian
coordinate system x ′1 , x ′2 , and x ′3 . The drop power transformation of the
trigonometric functions can be performed as follows:

Table 1
Slip directions and slip planes for a cubic single crystal.

1 2 3 4 5 6 7 8 9 10 11 12

m2 i [101] [011] [110] [110] [011] [101] [101] [110] [011] [101] [011] [110]

n3 i (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111)

A

B

Crystal

Top heater

Quartz
crucible Side

heater

Graphite

Heat shield

Fig. 1. The configuration of the furnace [19]. The two monitoring points, A and B, are
shown on the top and side heaters, respectively.
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