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A B S T R A C T

We devise a new 1D atomistic scale model of vicinal growth based on Cellular Automaton. In it the step motion
is realized by executing the automaton rule prescribing how adatoms incorporate into the vicinal crystal. Time
increases after each rule execution and then nDS diffusional updates of the adatoms are performed. The increase
of nDS switches between the diffusion-limited (DL, nDS=1) and kinetics-limited (KL, nDS > > 1) regimes of
growth. We study the unstable step motion by employing two alternative sources of instability – biased diffusion
and infinite inverse Ehrlich-Schwoebel barrier (iiSE). The resulting step bunches consist of steps but also of
macrosteps since there is no step-step repulsion incorporated explicitly into the model. This complex pattern
formation is quantified by studying the time evolution of the bunch size N and macrostep size Nm in order to
find the proper parameter combinations that rescale the time and thus to obtain the full time-scaling relations
including the pre-factors. For the case of biased diffusion the time-scaling exponent β of N is 1/2 while for the
case of iiSE it is 1/3. In both cases, the time-scaling exponent βm of Nm is ~3β/4 in the DL regime and 3β/5 in
the KL one.

1. Introduction

The production of new devices nowadays reaches new frontiers of
miniaturization but these fast and dramatic changes require very
precise tuning of layer-by-layer (step-flow) crystal growth. Thus, the
detailed use and directed manipulation of the processes and patterns
on atomic scale is of crucial practical relevance. For this, it is necessary
to reach a fundamental understanding of the growth mechanisms and
their consequences on atomic scale. This is why the surface morphol-
ogies resulting from various kinds of crystal growth processes are
subject of interest for large groups of researchers [1–5]. Surface self-
organization resulting in well-ordered structures is used to build
templates for growing nano-scale objects such as nano-dots or nano-
wires [6,7]. It is known that at the miscut surfaces the asymmetry
between adatom fluxes which attach to the steps from above and
bottom terraces leads to surface instabilities [8–12]. If the amount of
particles attaching to the step from the lower terrace is higher than the
particle flux from the above terrace meandered patterns emerge [10].
Otherwise, when the flux incoming from above is higher a step
bunching process happens [10,13]. Flux asymmetry at steps can be
induced by various dynamic mechanisms. The most often discussed in

this context are biased adatom diffusion i.e. due to electromigration
[10,14] or the existence of an Ehrlich-Schwoebel barrier (SE) [1,3–
5,15]. Below we will concentrate on these two sources of surface
instability.

The mechanism of step bunching that happens due to each of these
instability sources has been widely discussed and analyzed in its
various aspects [1,3–5,13–18]. Its initial stages, starting from step
doubling are easy to observe and analyze. However, when coming to an
exact evaluation of the scaling factors it is necessary to ensure large
systems, many samples and long times of study. This is very difficult in
experimental systems [14] and in more realistic MC simulations as well
[5,10]. Analytic models give better chance [10,17–22], however it
would be good to link their parameters with the ones of discrete
systems. From the other side classification of the studied phenomena to
the proper universality class [19] is a good course to understand
mechanisms and character of this dynamical process. In this work, a
model based on cellular automata (CA) is studied as a simple, clear,
and powerful tool that is expected to be able to go beyond the analytical
treatments. By extensive investigations of the proposed model in one
dimensional system we are able to determine different scalings of the
bunch size N with time in the regime of intermediate asymptotics [23].
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In the case of biased diffusion we get scaling exponent β=1/2 and in the
case of the surface with infinite inverse Ehrlich-Schwoebel barrier
(iiSE) it is β=1/3. The step bunches we observe in our simulations
consist of single steps that have size of one unit cell, but also of
macrosteps with size of multiple unit cells. Such formations are seen in
experiments [24] and their time evolution remains subject of studies
[25,26]. Macrosteps are created during the surface evolution process
because there is no step-step repulsion incorporated into the model.
This complex pattern formation is analyzed and together with the
scaling of bunch size N the time dependence of the size of macrosteps
Nm is studied. In both variants of the model the time scaling exponent
βm of Nm is reduced o approximately 3β/4 of the scaling exponent of N
in the DL regime and 3β/5 in the KL one. We find also the proper
parameter combinations that rescale the time and as an effect, all
studied curves are collected along a universal one.

Both studied systems allow to investigate scaling in wide range of
parameters. Preliminary results presented in [27] have shown some
examples of the scaling behavior. Now we expand our analysis into
other areas of parameters and show how results for wide range of
model parameters scale along universal curves. We checked that
different bias values give the same scaling. More interestingly, in the
system with iiSE the data for the bunch size also scales along the same
line in both slow and fast diffusion limits.

Below the model is described, then we show and analyze time
scaling for step bunch sizes and macrostep sizes for both studied
systems. General scaling functions are shown and discussed. We also
compare step profile forms as an effect of biased diffusion and the
presence of iiSE at the step.

2. The model

The model is devised as the simplest possible proposition that is
able to achieve atomic scale resolution while still retaining the
possibility for fast calculations on large systems. It is built as a
combination of two modules: the deterministic one – a cellular
automaton (CA) and a diffusional module - a typical Monte Carlo
(MC) procedure that brings the concept of stochasticity into the model
still keeping track of the positions of the individual adatoms. Each cell
from the 1D colony is given a value equal to its height in the vicinal
stairway that descends from the left to the right. In the beginning, the
steps are regularly distributed at distance l0. Another 1D array of the
same size L contains the adatoms. In the beginning they are randomly
distributed over the surface with concentration c. The growth rule
defines that each time there is an adatom at the right nearest
neighboring site to a step or macrostep it attaches unconditionally to
it. Then the step or the lowest layer of the macrostep advances one
position to the right, which is realized by increasing the value of the
vicinal cell colony at the position of the adatom by one as, illustrated in
Fig. 1. The adatom is deleted from the adatom array. The growth
updates using the growth rule are performed in a parallel fashion – the
update (change of height at that position with 0 or 1) of each cell from
the vicinal crystal is kept aside in a mirror array while every cell is
checked, then the whole cell population is renewed at instance using
this mirror array and only then the time is increased by 1. Each

execution of the automaton rule is complemented by compensation of
the adatom concentration to c and the adatom population is then
subjected to diffusional update(s) in a serial manner, their number
being denoted by nDS. In any diffusional update a total number of
adatom positions equal to the size of the adatom array L is chosen
sequentially at random. Then, if an adatom is found there, it is tried to
let it jump left or right with some probabilities, usually their sum being
1, except in the case of iiSE, and the move is accepted only if the next
chosen adatom position is not occupied already by an adatom. The
change of this adatom's position is enforced without postponing and
another position is checked for availability of an adatom. These
diffusional updates do not contribute to increase of the time. Thus,
with increasing nDS a transition is realized from diffusion-limited (DL)
growth to a kinetics-limited (KL) one – while the kinetic events (growth
rule executions) happen with the same fixed frequency and the
diffusing adatoms can make on average as many hops as determined
by nDS before being eventually captured by the growing surface [28].
The diffusion is influenced by one of two principal sources of instability
– directional bias or iiSE. The bias is realized by defining that the hop
probability to the right is (0.5+δ) while to the left it is (0.5−δ). The iiSE
is realized through inhibition of the diffusional hops to the left when
the adatom is the right next nearest neighbor to a step or macrostep
and inhibition of the diffusional hops to the right when the adatom is
the left nearest neighbor to a step or macrostep. Thus the only source of
adatoms incorporating into a step is the terrace behind it plus a small
amount that remains to the left of the infinite ES barrier when re-
building it one lattice site to the right in the process of discrete step
motion. The growth rule for iiSE case is presented in Fig. 1b. Adatom
diffusion over the barrier outlined there is blocked. Note the iiSE turns
the model into one-sided. Destabilizing factors in the model are not
opposed by step-step repulsions, hence there is no factor preventing
the formation of macrosteps. Indeed as it will be shown later step
bunches in fact are built out of macrosteps that become dominating
structure visible in the profile of the crystal.

The model permits fast calculations on systems with large sizes thus
achieving the regime of intermediate asymptotics [23] where a reliable
statistics is collected for the monitored properties. In order to control
the developing surface patterns we adopt a modification [27] of an
established monitoring protocol [29]. It is the formation of macrosteps
that determines the need of this modification. We investigate the time
dependent bunch size N and macrostep size Nm, which are the
parameters useful for the description of the step bunching phenomen-
on. An important criterion built into the protocol defines when two
neighboring steps belong to the same bunch – it is when the distance
between them is less than l0, whereas groups of steps with distance l=0
are considered as macrosteps. The bunch size N measures the height
interval between the topmost bunch step and the lowest one. The same
approach is applied to the macrostep size Nm. In the numerical results
presented below bunch usually consists of steps and macrosteps as well
(see Fig. 2). To obtain proper scaling of the results presented below we
performed calculations for large systems (up to 180,000 sites), large
number of time steps (~108) and usually repeat calculations at least 5
times each.

Fig. 1. Step move as an effect of CA module incorporation of diffusing particle into the step (a) in the biased diffusion model and (b) in the system with iiSE. It can be seen how the
infinite ES barrier is removed from the place where it is established and re-established at one lattice position to the right.
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